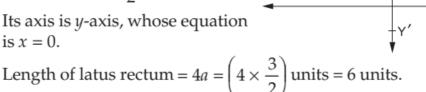
SOLUTION The given equation is of the form $x^2 = 4ay$, where 4a = 6, i.e., $a = \frac{3}{2}$.

So, this is a case of *upward parabola*.


Its focus is
$$F(0, a)$$
, i.e., $F\left(0, \frac{3}{2}\right)$.

Its vertex is O(0, 0).

The equation of the directrix is

$$y = -a$$
, i.e., $y = \frac{-3}{2}$, i.e., $2y + 3 = 0$.

Its axis is *y*-axis, whose equation is x = 0.

2y+3 = 0

Find the coordinates of the focus and the vertex, the equations of the EXAMPLE 4

directrix and the axis, and length of latus rectum of the parabola $x^2 = -16y$.

SOLUTION The given equation is of the form $t \in S^2$. $x^2 = -4ay$, where y = 4

Its focus is F(0, -a), i.e., F(0, -4). Its vertex is O(0, 0).

The equation of the directrix is y = a, i.e., y = 4.

Its axis is *y*-axis, whose equation is x = 0.

Length of latus rectum = $4a = (4 \times 4)$ units = 16 units.

Find the equation of the parabola with focus at F(3,0) and directrix EXAMPLE 5 x = -3.