\therefore AB + BC = AC.

This shows that the given points are collinear.

- **EXAMPLE 4** Find the equation of the curve formed by the set of all points whose distances from the points (3, 4, -5) and (-2, 1, 4) are equal.
- SOLUTION Let P(x, y, z) be any point on the given curve, and let A(3, 4, -5) and B(-2, 1, 4) be the given points.

Then,
$$PA = PB$$

 $\Rightarrow PA^2 = PB^2$
 $\Rightarrow (x - 3)^2 + (y - 4)^2 + (z + 5)^2 = (x + 2)^2 + (y - 1)^2 + (z - 4)^2$

 $\Rightarrow 10x + 6y - 18z - 29 = 0.$

Hence, the required curve is 10x + 6y - 18z - 29 = 0.

EXAMPLE 5 Find the equation of the curve formed by the set of an three points the sum of whose distances from the points $A(4\Theta, 0)$ and B(-4, 0, 0) is 10 units.

SOLUTION Let P(x, y, z) be an additionary point on the given curve. Then,

$$P(x - 4)^{2} + y^{2} + z^{2} = 10$$

$$\Rightarrow \sqrt{(x + 4)^{2} + y^{2} + z^{2}} = 10 - \sqrt{(x - 4)^{2} + y^{2} + z^{2}} = 10$$

$$\Rightarrow (x + 4)^{2} + y^{2} + z^{2} = 10 - \sqrt{(x - 4)^{2} + y^{2} + z^{2}} \qquad \dots (i)$$

$$\Rightarrow (x + 4)^{2} + y^{2} + z^{2} = 100 + (x - 4)^{2} + y^{2} + z^{2} - 20\sqrt{(x - 4)^{2} + y^{2} + z^{2}}$$
[on squaring both sides of (i)]

$$\Rightarrow 16x = 100 - 20\sqrt{(x-4)^2 + y^2 + z^2}$$

$$\Rightarrow 5\sqrt{(x-4)^2 + y^2 + z^2} = (25 - 4x)$$

$$\Rightarrow 25[(x-4)^2 + y^2 + z^2] = 625 + 16x^2$$

$$\Rightarrow 25[(x-4)^2 + y^2 + z^2] = 625 + 16x^2 - 200x$$

 $\Rightarrow 9x^2 + 25y^2 + 25z^2 - 225 = 0.$

Hence, the required equation of the curve is

$$9x^2 + 25y^2 + 25z^2 - 225 = 0.$$

Answers

1. (-1, 2, 1)	2. (3, -2, -1), (4, -5, 1)	3. (8, -14, 9)
4. 1:2	5. 3:2 (externally)	6. 3:2, (2, 0, 1)
7. $\left(\frac{13}{5}, \frac{23}{5}, 0\right)$	8. 2:3, $\left(\frac{13}{5}, \frac{-9}{5}, \frac{-2}{5}\right)$	9. $\left(\frac{19}{8}, \frac{57}{16}, \frac{17}{16}\right)$
10. (1, -8, 9)	11. (-2, 5, 8)	12. $a = -2, b = -8, c = 2$
13. (1, 2, 3); (3, 4, 5); (-1, 6, -7)		

HINTS TO SOME SELECTED QUESTIONS

2. Let *P* and *Q* be the points of trisection of *AB*. Then, *P* divides *AB* in the ratio 1 : 2 and *Q*

7. Suppose the *xy*-plane divides *AB* in the ratio **P Q** Then, $\frac{6\lambda + 1}{\lambda + 1} = 0 \Rightarrow \lambda = -\frac{1}{6}$ Divide *AB* if the ratio 1: (-6). 8. Lidivides *BC* in the 8. *D* divides *BC* in the rati