CLEAR EXAMENGINEERING | MEDICAL | FOUNDATION

ELECTRO MAGNETIC WAVES

Maxwell's equations

$$\begin{split} \oint E \bullet dA &= Q/\epsilon_0 & \text{(Gauss's Law for electricity)} \\ \oint B \bullet dA &= 0 & \text{(Gauss's Law for magnetism)} \\ \oint E \bullet d\ell &= \frac{-d\Phi_B}{dt} & \text{(Faraday's Law)} \\ \oint B \bullet d\ell &= \mu_0 i_c + \mu_0 \ \epsilon_0 \frac{d\Phi_E}{dt} & \text{(Ampere-Maxwell Law)} \end{split}$$

Oscillating electric and magnetic fields

$$\begin{aligned} &\mathsf{E} = \, \mathsf{E}_{\mathsf{x}}(\mathsf{t}) \, = \, \mathsf{E}_0 \, \sin \, \left(\mathsf{k} z \, - \, \omega \mathsf{t} \right) \\ &= \, \mathsf{E}_0 \, \sin \, \left[\, 2\pi \! \left(\frac{\mathsf{z}}{\lambda} \! - \! \mathsf{v} \mathsf{t} \right) \right] = \, \mathsf{E}_0 \, \sin \! \left[\, 2\pi \! \left(\frac{\mathsf{z}}{\lambda} \! - \! \frac{\mathsf{t}}{\mathsf{T}} \right) \right] \\ &\mathsf{E}_0 / \mathsf{B}_0 \, = \, \mathsf{c} \\ &\mathsf{c} \, = \, 1 / \sqrt{\mu_0 \epsilon_0} \quad \mathsf{c} \, \text{ is speed of light in vaccum} \\ &\mathsf{v} = 1 / \sqrt{\mu \epsilon} \quad \mathsf{v} \, \text{ is speed of light in medium} \end{aligned}$$

 $p=\frac{U}{c}$ energy transferred to a surface in time t is U, the magnitude of the total momentum delivered to this surface (for complete absorption) is p

Electromagnetic spectrum

	Type	Wavelength range	Production	Detection
pre	Radio	> 0.1m	Rapid acceleration and decelerations of electrons in aerials	Receiver's aerials
	Microwave	0.1m to drop.	Klystron value or magnetron value	Point contact diodes
	Infrayem vieW Page	1mm to 700nm	Vibration of atoms and molecules	Thermopiles Bolometer, Infrared photographic film
	Light	700nm to 400nm	Electrons in atoms emit light when they move from one energy level to a lower energy	The eye, photocells, Photographic film
	Ultraviolet	400nm to 1nm	Inner shell electrons in atoms moving from one energy level to a lower level	photocells photographic film
	X-rays	1nm to 10 ⁻³ nm	X-ray tubes or inner shell electrons	Photograpic film, Geiger tubes, Ionisation chamber
	Gamma rays	< 10 ⁻³ nm	Radioactive decay of the nucleus	do