Triangles / Trigonometry / Circles

$\sin\theta =$	Орр / Нур
$\cos\theta =$	Adj / Hyp
$\tan \theta =$	Opp / Adj
Pythagorean	 3-4-5
triples (2 sets)	 5 – 12 – 13
Equation for a circle	$\left(\left(x-h\right)^{2}+\left(y-k\right)^{2}=r^{2}$
Arc length =	$\frac{\theta}{360}2\pi r$
Sector area =	$\frac{\theta}{360}\pi r^2$
30° to radians	$30^\circ = \frac{\pi}{6}$ radians
45° to radians	$45^\circ = \frac{\pi}{4}$ radians
	co.un

Exponents / Radicals		le.co.
$x^a x^b =$	Note50	x^{a+b}
$\frac{x^a}{x^b} =$	com Note 2	x^{a-b}
	page 2	x^{ab}
$(xy)^{a} =$		$x^{a}y^{a}$
$x^{-a} =$		$\frac{1}{x^a}$
$x^0 =$		1 (if $x \neq 0$)
$x^{a/b} =$		$\left(\sqrt[p]{x}\right)^{a}$
$\sqrt{xy} =$		$\sqrt{x}\sqrt{y}$
$\sqrt{\frac{x}{y}} =$		$\frac{\sqrt{x}}{\sqrt{y}}$

Miscellaneous

$i^2 =$	-1
Average (mean) =	sum / # of values
Relationship of distance,	d and
rate, and time	a = rt