
3.3.1 Direct proof

A direct proof is a simple chain of implications, starting with what’s known and ending with the
statement of the theorem one wanted to prove. For example:

Theorem 2 The sum of two odd integers is an even integer.

Proof. An integer is odd if it can be written in the form 2n + 1 for some n ∈ Z. So the sum of
two odd integers is of the form (2n+1)+(2m+1), for some n, m ∈ Z. Now (2n+1)+(2m+1) =
2n + 2m + 2 = 2(n + m + 1), which is even. �

3.3.2 Proof by contradiction

A proof by contradiction (also called redactio ad absurdum) starts by assuming that the state-
ment you want to prove is false, and then deducing from this a contradiction. In other words, if
we want to prove a statement P , we show that ¬P implies a statement which is false. Hence ¬P
is false, and so P must be true.

We used this technique in our proof of Theorem 1: We assumed that A 6= ∅ (i.e. that there
exist positive integers greater than 1 which are not divisible by prime numbers), and deduced a
contradiction from this. Thus A = ∅ must hold.

Here is another example:

Theorem 3
√

2 is irrational.

Proof. Suppose that
√

2 is rational, i.e. that
√

2 = m
n for some m,n ∈ Z, n 6= 0. We may write

m
n in lowest terms, i.e. we can choose m,n such that m and n do not share any common factor
besides 1. Squaring both sides give 2 = m2

n2 , so m2 = 2n2. This means that m2 is even, and so m
itself is also even (if m were odd, then m2 would also be odd). Hence we can write m = 2k for
some k ∈ Z, and so 2n2 = m2 = (2k)2 = 4k2. Divide both side by 2, and we get n2 = 2k2. This
means that n2 is even, which in turn implies that n itself is also even. So now we have shown
that m and n are both even (are both divisible by 2), which is impossible since m and n have
no common factor. This contradiction shows that our assumption (that

√
2 is rational) is wrong.

Hence
√

2 is irrational. �

Here is yet another example (which dates back to Euclid, some 2300 years ago):

Theorem 4 There are infinitely many prime numbers.

Proof. Suppose that there are only finitely many prime numbers, and let p1, p2, . . . , pn be all of
them. Consider the number N := p1 · p2 · · · pn + 1, the product of all primes, plus one. Then N
is not divisible by any of the pi’s, because it leaves a remainder of 1 when divided by any pi. But
this means that N is not divisible by any prime number, and certainly N > 1. However, Theorem
1 asserts that any integer greater than 1 is divisible by a prime. This is a contradiction, hence
our assumption (that there are only finitely many primes) must be false. It follows that there are
infinitely many primes. �

3.3.3 Mathematical induction

A proof by mathematical induction is a clever way of using Axiom 1 (the well-ordering
principle).

If we want to prove a statement Sn that depends on a natural number n, then it suffices to
prove the following two statements:

(i) S1 is true, i.e. our statement is true when n = 1, and
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