IV. Graphing

Let f be defined by

$$f(x) = \begin{cases} x^2 & \text{if } x < -1 \\ x & \text{if } -1 \le x < 1 \\ 1 - x & \text{if } x \ge 1 \end{cases}$$

- Sketch the graph of f.
- b. Determine at point/s at which f is discontinuous and justify your answer/s.
- c. What kind of discontinuity occurs in your answer in part b? Justify your answer.

Let f be a function defined by

$$f(x) = \begin{cases} x^2 - 4 & \text{if} & x < 2\\ 4 & \text{if} & x = 2\\ 4 - x^2 & \text{if} & x \ge 2 \end{cases}$$

- Sketch the graph of the function.
- b. Find $\lim_{x\to 2^+} f(x)$, $\lim_{x\to 2^-} f(x)$, and $\lim_{x\to 2} f(x)$ if they exist.

V. Inspection

- a) $\lim_{x\to -2^-} f(x)$
- c) $\lim_{x \to -2} f(x)$

- d) $\lim_{x \to -5} f(x)$
- e) $\lim_{x\to 5} f(x)$