
3
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Network Analysis

• Network Scheduling:
• Main purpose of CPM is to determine the “critical path”
• Critical path determines the minimum completion time for a project
• Use forward pass  and backward pass routines to analyze the 

project network
• Network Control:
• Monitor progress of a project on the basis of the network schedule
• Take correction action when required

• “Crashing” the project
• Penalty/reward approach

Copyright 2008, Dr. Steven A. Gabriel
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Activity on Node (AON) 
Representation of Project 

Networks

Preview from Notesale.co.uk

Page 3 of 70



7

Copyright 2008, Dr. Steven A. Gabriel

13

Project Networks
• Total Slack: Amount of time an activity may be delayed from 

its earliest starting time without delaying the latest completion 
time of the project
TS(j)=LC(j)-EC(j) or TS(j)=LS(j)-ES(j)

• Those activities with the minimum total slack are called the 
critical activities (e.g., “kitchen cabinets”)

• Examples of activities that might have slack
• Free Slack: Amount of time an activity may be delayed from 

its earliest starting time without delaying the starting time of
any of its immediate successors.
FS(j)= Min i in S(j) {ES(i)-EC(j)

• Let’s consider the sample network relative to critical activities 
and slack times

Copyright 2008, Dr. Steven A. Gabriel
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CPM-Determining the Critical 
Path AON

Step 1: Complete the forward pass

Step 2: Identify the last node in the network as a critical activity

Step 3: If activity i in P(j) and activity j is critical, check if 
EC(i)=ES(j).  If yes activity i is critical.  When all i in P(j) 
done, mark j as completed

Step 4: Continue backtracking from each unmarked node until the 
start node is reached
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• The early event time for node i, ET(i), is the earliest time at which the event 
corresponding to node i can occur

• The late event time for node i, LT(i), is the latest time at which the event 
corresponding to node i can occur w/o delaying the completion of the 
project

• Let tij be the duration of activity (i,j)
• The total float (slack) TF(i,j) of activity (i,j) is the amount by which the 

starting time of (i,j) could be delayed beyond its earliest possible starting 
time w/o delaying the completion of the project (assuming no other 
activities are delayed)

• TF(i,j)=LT(j)-ET(i)-tij

• The free float of (i,j), FF(i,j) is the amount by which the starting time of 
activity (i,j) can be delayed w/o delaying the start of any later activity 
beyond its earliest possible starting time

• FF(i,j) = ET(j)-ET(i)-tij

Activity on Arc (AOA) Representation

Copyright 2008, Dr. Steven A. Gabriel
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AOA Network Structure
• The network is acyclic (o/w an activity would precede itself)

21 3

• Each node should have at least one arc directed into the node 
and one arc directed out of the node (with the exception of the 
start and end nodes), why?

• Start node has does not have any arc into it and the end node 
has no arc out of it

• All of the nodes and arcs of the network have to be visited 
(that is realized) in order to complete the project, why?
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Using Linear Programming to 
Find a Critical Path

• Let xj= the time that the event corresponding to node j occurs
• Let tij=the time to complete activity (i,j)
• For each activity (i,j), we know that before node j occurs, node

i must occur and activity (i,j)  must be completed

),(, jitxx ijij ∀+≥⇒
• Let 1 be the index of the start node
• Let F be the index of the finish node (i.e., when the project is

completed)
• LP objective function is to minimize xF-x1, i.e., the total project 

time

Copyright 2008, Dr. Steven A. Gabriel
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Using Linear Programming to 
Find a Critical Path

Min x5 – x1
s.t.
A) x2 >= x1 + 2
B) x4 >= x1 + 6
C) x3 >= x1 + 4
D) x4 >= x2 + 3
E) x4 >= x3 + 5
F) x5 >= x2 + 4
G) x5 >= x4 + 2
Variables unrestricted in sign
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Project Crashing and Time-Cost 
Analysis, Sample Data

$3,500Crash F and C by 1 unit, and E by 
2 units

S12T=7

$3,225Crash C by 1 unit, E by 2 unitsS11T=8

$3,000Crash F by 1 unit, E by 2 unitsS10T=8

$3,150Crash F, C, and E by 1 unitS9T=8

$2,975Crash E by 2 unitsS8T=9

$3,125Crash C and E by 1 unitS7T=9

Crash F and E by 1 unit

Crash F and C by 1 unit

Crash E by 1 unit

Crash C by 1 unit

Crash F by 1 unit

Activities at normal duration

Description of Crashing

$2,900

$3,050

$2,875

$3,025

$2,800

$2,775

Total 
Cost

S6T=9

S5T=9

S4T=10

S3T=10

S2T=10

S1T=11

Crashing 
Strategy

Project 
Duration

• If c “crashable”
activities, there are 
2c possible crash 
strategies, why?

• Suppose we can crash 
6 of the 7 activities
26=64 possible crash 
strategies

• There are 12 of the 64 
strategies shown here
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Project Crashing and Time-
Cost Analysis
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4. Start-to-Finish Lead (SFAB) This specifies that there must be 
at least SF time units between the start of activity A and the 
completion of activity B 
Example?

A

B

SF

• Can also express the leads or lags in percentages (instead of 
time units)

• Can also use “at most” relationships as well as the “at least”
ones shown above

Precedence Diagramming 
Method (PDM)
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• An example: 3 activities done in series
project duration of 30 days using conventional CPM method

A,10 B,10 C,10

0,10 10,20 20,30

0,10 10,20 20,30

Days

A

B

C

105 2015 25 30 35 40 45 50

Precedence Diagramming 
Method (PDM)
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The Geometry of the Toy Problem 
with Integer Constraints

(MATLAB output)

x1+x2<=83.5

2x1+x2<=99.7

x1<=4016,67

Copyright 2008, Dr. Steven A. Gabriel
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Max 3x1+2x2 (Objective function)
s.t.
2x1+x2 <=99.7 (Finishing constraint)
x1+ x2 <=83.5 (Carpentry constraint)
x1        <=40 (Limited demand constraint on soldiers)
x1        >=0 (Nonnegativity constraint on soldiers)
x2        >=0 (Nonnegativity constraint on cars)

end
gin x1 (“gin” stands for general integer variable)
gin x2 

Special case of binary variables (=0 or 1) to be used later, the command to make the 
variable x a binary variable is 
inte x  or 
inte x 

The Toy Problem Revisited
LINDO Formulation
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Multiperiod Production-Inventory 
Problem

d1=1                     ! Demand for period 1
d2=3                     ! Demand for period 2
d3=2                     ! Demand for period 3
d4=4                     ! Demand for period 4
i1=0                     ! Initial inventory
i2<=4 i3<=4 i4<=4        ! Inventory capacity
x1<=5 x2<=5 x3<=5 x4<=5  ! Production capacity

x1-100000y1 <=0          
! Consistency between production and set-up cost varibles

x2-100000y2 <=0          
! Consistency between production and set-up cost varibles

x3-100000y3 <=0          
! Consistency between production and set-up cost varibles

x4-100000y4 <=0          
! Consistency between production and set-up cost varibles

end                      ! Nonnegativity implied by LINDO
inte y1
inte y2
inte y3
inte y4

Min 1x1+1x2+1x3+1x4      ! Production variable costs
+ 3y1+3y2+3y3+3y4        ! Production fixed costs
+0.5i1+0.5i2+0.5i3+0.5i4 ! Inventory costs
s.t.

i1+x1-d1 -i2=0           ! Period 1 material balance
i2+x2-d2 -i3=0           ! Period 1 material balance
i3+x3-d3 -i4=0           ! Period 1 material balance
i4+x4-d4    =0           ! Period 1 material balance

Production schedule IPProduction schedule IP

Copyright 2008, Dr. Steven A. Gabriel
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⇒20 is the minimum cost for the 4 months optimal schedule.⇒20 is the minimum cost for the 4 months optimal schedule.

Can relate to a shortest path problem in a network as follows.Can relate to a shortest path problem in a network as follows.

1 2 3 4Inventory

i1=0 i2=0 i3=2 i4=0 0

Demand
= 1

Demand
= 3

Demand
= 2

Demand
= 4

1

x1 = 1
x1

x2 = 5
x2

x3 = 0
x3

x4 = 4
x4

Multiperiod Production-Inventory 
Problem
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• Consider the following cost matrix for an assignment problem with n=5
• Select the cheapest workers by task first, will this work?

$200$100$200$100$700Worker 5

$400$100$500$300$100Worker 4

$500$1,000$800$900$300Worker 3

$500$1,100$800$700$400Worker 2

$400$100$500$400$200Worker 1

Task5Task 4Task 3Task 2Task 1

The Assignment Problem

Copyright 2008, Dr. Steven A. Gabriel
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min 200x11 + 400x12 + 500x13 + 100x14  + 400x15+  400x21 + 700x22 + 800x23 + 
1100x24 + 500x25+ 300x31 + 900x32 + 800x33 + 1000x34 + 500x35+  100x41 + 300x42 + 
500x43 + 100x44  + 400x45+700x51 + 100x52 + 200x53 + 100x54  + 200x55

s.t.

x11+x12+x13+x14+x15=1  ! worker 1

x21+x22+x23+x24+x25=1  ! worker 2

x31+x32+x33+x34+x35=1  ! worker 3

x41+x42+x43+x44+x45=1  ! worker 4

x51+x52+x53+x54+x55=1  ! worker 5

x11+x21+x31+x41+x51=1  ! task 1

x12+x22+x32+x42+x52=1  ! task 2

x13+x23+x33+x43+x53=1  ! task 3

x14+x24+x34+x44+x54=1  ! task 4

x15+x25+x35+x45+x55=1  ! task 5

! and all variables nonnegative

The Assignment ProblemPreview from Notesale.co.uk

Page 59 of 70



63

Copyright 2008, Dr. Steven A. Gabriel

125

Solving Integer Programs Using Branch-and-
Bound for Pure IPs

• Let’s see how to get this solution with the Branch-
and-Bound Technique

• 7 LP subproblems to solve

Copyright 2008, Dr. Steven A. Gabriel
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Solving Integer Programs Using Branch-and-
Bound for Pure IPs

SP0 SP1original
IP

SP2

no integer constraints, LP relaxation
x1=3.75,x2=2.25, z=41.25
IP upper bound is 41.25

x1>=4
x1=4,x2=1.8
z=41

SP3 x1<=3, x1=3, x2=3,z=39
SP6 has better z-value, fathom 
this node

SP4x1>=4,
x2>=2
infeasible 
fathom node

SP5 x1>=4,
x2<=1, 
x1=4.44,x2=1,z=40.556

SP6x1>=4,
x2<=1,
x1>=5, 
x1=5,x2=0,z=40
IP lower bound, z=40

SP7 x1>=4,
x2<=1,
x1<=4
x1=4,x2=1, z=37, fathom node

x1=5,x2=0, z=40
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max 8x1+5x2
s.t.
x1+x2<=6
9x1+5x2<=45
x1,x2>=0, x1, x2 

integer

• Original problem • Subproblem 3
• add new constraint x1<=3

max 8x1+5x2
s.t.
x1+x2<=6
9x1+5x2<=45
x1,x2>=0, x1<=3

• Conclusion:  Not better than the current lower bound of 40 from 
subproblem 6

• Fathom this node
• No nodes left to try- done!

x1=3,x2=3, z=39
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Solving Integer Programs Using Branch-and-
Bound for Pure IPs

SP0 SP1original
IP

SP2

no integer constraints, LP relaxation
x1=3.75,x2=2.25, z=41.25
IP upper bound is 41.25

x1>=4
x1=4,x2=1.8
z=41

SP3 x1<=3, x1=3, x2=3,z=39
SP6 has better z-value, fathom 
this node

SP4x1>=4,
x2>=2
infeasible 
fathom node

SP5 x1>=4,
x2<=1, 
x1=4.44,x2=1,z=40.556

SP6x1>=4,
x2<=1,
x1>=5, 
x1=5,x2=0,z=40
IP lower bound, z=40

SP7 x1>=4,
x2<=1,
x1<=4
x1=4,x2=1, z=37, fathom node

x1=5,x2=0, z=40
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