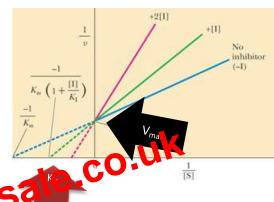
Summary of Enzyme Inhibition

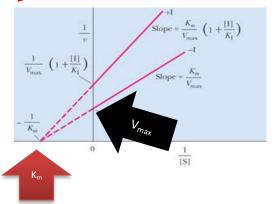

1) Understand the definition of enzyme inhibition

- Enzyme inhibition is a decrease in velocity of the enzyme reaction in the presence of a second agent.
- Enzyme Inhibitors are classified in two main ways
 - o HOW they bind
 - Reversible inhibitors bind/interact with the enzyme via non-covalent interactions (hydrogen bonding, van der Waals, Ionic, and Dipole interactions)
 - Irreversible inhibitors bind to the enzyme with covalent bonds.
 - o WHERE they bind
 - <u>Competitive inhibitors</u> bind the enzyme in the **active** site.
 - Noncompetitive inhibitors bind the enzyme at a **secondary** site other than the active site.
- 2) Know the difference between the three types of inhibition: competitive, noncompetitive, mixed noncompetitive
- Competitive Inhibition kinetics

 \circ $K_m = changed$

 V_{max} = unchanged

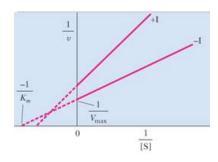
Explanation: As substrate concentration increases, it outcompetes the inhibitor for the active site and allows the reaction to reach maximum velocity. However, it will be a higher concentration of substrate (K_m) at ½ V_{max}. [Illustration: A beaker of enzyme that is surrounded by much more substrate than inhibitor continue to react at the same rate]

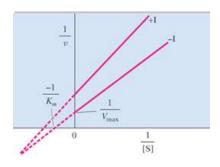


Additional notes: inhibiter often la similar character stics to the substrate

- Non-competitive Inhibition by etics
 - o Ka = umha g a

V_{ma} hange


explanation: As the inhibitor binds the enzyme, it prevents the catalysis of the reaction without interfering with the substrate. This slows down the maximum velocity, but the concentration of substrate (K_m) at ½ V_{max} would still be the same. (Illustration: Putting factory workers on a break will slow down overall production, but the individuals will still work at the same pace]



- Mixed Non-competitive Inhibition kinetics (Figures below)
 - \circ K_m = changed

 V_{max} = changed

- \circ Explanation: Binding of the inhibitor at a secondary site prevents catalysis of the reaction AND interferes with substrate binding at the active site. This both lowers the maximum velocity and results in a higher substrate concentration (i.e. K_m) at ½ V_{max} .
- o Additional notes: more common type of inhibition

