
5 
 

O(H) 

O(H) 

 
Lemma 1.28 There is a 1 − 1 correspondence between any two right cosets of H in G. 

 

Theorem 1.29 Lagrange’s Theorem: If G is a finite group and H is a subgroup of G, 
then O(H) is the divisor of O(G), converse of the Lagrange’s theorem need not be 
true. 

 

Example 1.30 1. Let G = {1, −1, i, −i}, H = {i, −1}. Then O(H)/O(G) 

but H is not a subgroup of G. 

2. Let G = S3 = {e, p1, p2, p3, p4, p5}, H = {p − 1, p2}. Then O(H)/O(G) 

but H is not a subgroup of G. 
 

Definition 1.31 Index: If H is a subgroup of G, the index of H in G is the number of 
distinct right cosets of H in G. It is denoted by iG(H). 

 

Remark 1.32 iG(H) = O(G) 
 

Example 1.33 Let G = {Z12, ⊕12}; H = {0, 4, 8}. Then iG(H) =  4  = 12/3 = O(G) 
 

Definition 1.34 If G is a group and a ∈ G. The order of a  (period of a) is the least 
positive integer m such that am = e. If no such integer exists, we say that a is of 
infinite order. 

 

Example 1.35 Let G = {1, −1, i, −i} 

1. a = −1 ⇒ a2 = (−1)2 = 1 ⇒ O(a) = 2 

2. a = i ⇒ a4 = i4 = 1 ⇒ O(a) = 4. 

Example 1.36 In (Z12, ⊕), O[2] ∈ Z12 
now, O([2]) = 6 {∵ [2]6 = [2] + [2] + [2] + [2] + [2] + [2] = 0} 

O[3] = 4; O([6]) = 2. 
 

Example 1.37 Let (Z, +), e=0. Then 1 ∈ Z is of infinite order. Corollary 1.38 If G is 

a finite group and a ∈ G, then O(a) divides O(G). Corollary 1.39 If G is finite and 

a ∈ G, then aO(G) = e. 

Definition 1.40 Euler function φ(n): φ(1) = 1, φ(n) = number of posi- tive integers 
less than n and relatively prime to n for n > 1. 
φ(8) = 4 (∵ 1, 3, 5, 7 are relatively prime to 8), φ(5) = 4, φ(7) = 6, φ(10) = 

4, φ(15) = 7. 
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Example 1.94 
. Σ 

1   2   3  4 

2   1   4  3 

. 
1   2   3   4 5 

2   1   3   5 4 

 
 
= (1 2) (3 4) = even permutation 
 

Σ 

= (1 2) (3) (4 5) = odd permutation 

 

Result 1.95 A permutation can be written either as a product of an even number 
of transpositions or as a product of an odd number of transpositions and not both. 
Proof: Let θ ∈ Sn 
Suppose θ can be written as a product of X transpositions in one way and can be 
written as a product of Y transpositions in another way. Consider a polynomial in 
variables x1, x2, ..., xn which are the elements of S. 

Y 
P (x1, x2, ..., xn) =  

i<j 
(xi − xj). 

 

Let θ ∈ Sn be a permutation on n-symbols 1, 2, ..., n. Let θ be act on 

P (x1, x2, ..., xn) by 

θ : P (x1, x2, ..., xn) = 
Y 
 
i<j 

(xi − xj) → 
Y 
 
i<j 

(xθ(i) − xθ(j)). 

 

It is clear that θ : P (x1, x2, ..., xn) → ±P (x1, x2, ..., xn). For example, consider θ = 
(1 3 4) (2 5) ∈ S5. Then P (x1, x2, ..., x5) = (x1 − x2)(x1 − x3)(x1 − x4)(x1 − x5)(x2 − 
x3)(x2 − x4)(x2 − x5)(x3 − x4)(x3 − x5)(x4 − x5); θ(P (x1, x2, ..., x5)) = (x3 − x5)(x3 − x4)(x3 
− x1)(x3 −  x2)(x5 −  x4)(x5 − x1)(x5 − x2)(x4 − x1)(x4 − x2)(x1 − x2) = −[(x1 − x2)(x1 − 
x3)(x1 − x4)(x1 − x5)(x2 −x3)(x2 −x4)(x2 −x5)(x3 −x4)(x3 −x5)(x4 −x5)] = −P (x1, x2, ..., x5). 
Suppose θ = (1, 2) ∈ S2; P (x1, x2) = (x1 − x2); θ(P (x1, x2)) = (x2 − x1) = 
−(x1 −x2) = −P (x1, x2). (i.e)The effect of a transposition on P is to change the sign of 
P . Now the operation by a transposition (rs) where r < s has the following effects 
on P . 
(i) Any factor of P which contains neither the suffix r nor s remains un- changed 
(ii) The single factor (xr − xs) changes its sign by replacing r by s and s by 
r 
(iii) The remaining factor which contain either the suffix r (or) s but not both can 
be grouped into the following 3 types of products. 
(a) [(x1 − xr)(x1 − xs)][(x2 − xr)(x2 − xs)]...[(xr−1 − xr)(xr−1 − xs)] 
(b) [(xr − xr+1)(xr+1 − xs)][(xr − xr+2)(xr+2 − xs)]...[(xr − xs−1)(xs−1 − xs)] 
(c) [(xr  −  xs+1)(xs  −  xs+1)][(xr  −  xs+2)(xs  −  xs+2)]...[(xr  −  xn)(xs  −  xn)] On replacing 
r by s and s by r, the signs of all types of products do not change. Hence effect 
of the transposition (rs) on P is to change the sign of 
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2. UNIT II 

Another Counting Principle 
 

Definition 2.1 If a, b ∈ G, then b is said to be a conjugate of a in G if there exists an 
element c ∈ G such that b = c−1ac. We shall write this conjugate relation as a ∼ b. 
(i.e.) a ∼ b ⇒ b is conjugate to a ⇒ b = c−1ac, c ∈ G. 

 

Lemma 2.2 Conjugation is an equivalence relation on G. 

Proof: (i) ∼ is reflexive: 
Let a ∈ G, then a = a−1ae, a ∈ G ⇒ a ∼ a ∀a ∈ G. ∴∼ is reflexive. 
(ii) ∼ is symmetric: 
Suppose, a ∼ b ⇒ b = c−1ac, c ∈ G. ⇒ a = c b c−1 = (c−1)−1b(c−1) = 
x−1bx, x = c−1 ∈ G ⇒ b ∼ a. ∼ is symmetric. (iii)∼ is 
transitive: 
Suppose a ∼ b and b ∼ c.  Then a ∼ b ⇒ b = x−1ax, x ∈ G; b ∼ c ⇒              c = y−1by, 
y ∈ G. Now, c = y−1by = y−1(x−1ax)y = (y−1x−1)a(xy) = (xy)−1a(xy) = z−1az, z = xy ∈ G 
⇒ a ∼ c. ∴∼ is transitive. 
Hence, ∼ is an equivalence relation. 

 

Definition 2.3 For any a ∈ G, let C(a) = {x ∈ G|x ∼ a}, C(a) is the equivalence class 
a in G, under the relation ∼. It is usually called the conjugate class of a ∈ G 

 
Remark 2.4 C(a) = {x ∈ G|x ∼ a} = {x ∈ G|x ∼ a} = {x ∈ G|x = y−1ay, y ∈ G} = 
{y−1ay|y ∈ G}. If consists of the set of all distinct el- ements of the form x−1ax 
as x ranges over G. Suppose the number of elements in C(a) is denoted by Ca. 
Since the union of all distinct conjugate classes is G, 

 

G = C(a1) ∪ C(a2) ∪ ... ∪ C(an) 
Σ 

O(G) = Ca1 + Ca2 + ... + Can = 
ai∈G 

 
 
Cai 

Where the summation runs over each element a in each conjugate classes. 
 

Definition 2.5 If a ∈ G, N (a), normaliser of a is defined as {x ∈ G|ax = 
xa} 

 
Example 2.6 (i) G = {1, −1, i, −i}. When a = 1, N (a) = N (1) = {1, −1, i, −i} = G; 
When a = −1, N (−1) = G. 
(ii) G = {Z5, ⊕5}. a = [2], N (a) = N ([2]) = {[0], [1], [2], [3], [4]} 
(iii) G = S3 = {e, φ, ψ, φ · ψ, ψ · φ, ψ2}. N (φ) = {e, φ}; N (ψ) = {e, ψ, ψ2}; N (ψ2) = 
{e, ψ2, ψ}. 
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O(N (a)) 

O(N (a)) 

 

Lemma 2.7 N (a) is a subgroup of G. 
Proof: Let x, y ∈ N (a) ⇒ ax = xa and ay = ya .................... (1) 
Now, a(xy) = (ax)y = (xa)y [by(1)] = x(ay) = x(ya) [by(1)] = (xy)a ⇒ 
xy ∈ N (a) ∀x, y ∈ N (a) ............. (2) 
Suppose x ∈ N (a) ⇒ ax = xa ⇒ x−1a = ax−1 [By premultiply and post multiply 
by x−1] ⇒ x−1 ∈ N (a) ................................. (3) 
By (2) and (3), N (a) is a subgroup of G. 

 
Calculation for C(a): 
Let G  = S3 = {e, φ, ψ, φ · ψ, ψ · φ, ψ2}. C(φ) = {x−1φx|x ∈ S3} = 
{e−1φe, φ−1φφ, ψ−1φψ, (φ · ψ)−1φ(φ · ψ), (ψ · φ)−1φ(ψ · φ), (ψ2)−1φψ2} 
C(1, 2) = {e−1(1, 2)e, (1, 2)−1(1, 2)(1, 2), ψ−1(1, 2)ψ, (φ·ψ)−1(1, 2)(φ·ψ), (ψ · 
φ)−1(1, 2)(ψ · φ), (ψ2)−1(1, 2)ψ2} = {(1 2 3) (1 2) (1 2 3), (1 2) (1 2) (1 2), 
(1 3 2) (1 2) (1 3 2), (1 3) (1 2) (1 3), (2 3) (1 2) (2 3), (2 3 1) (1 2) (1 3 2)} = 

{(1 2), (1 2), (2 3)}. ∴ C(φ) = {φ, φ · ψ, ψ · φ} 
C = O(C(1, 2)) = 3. O(G) = 6 = 3. ∴ C = O(S3) . 

(1,2) O(N (1,2)) 3 (1,2) O(N (1,2)) 

Theorem 2.8 If G is a finite group, then Ca = O(G) ; In other wards, the number 
of elements conjugate to a in G is the index of N (a) in G. Proof: We shall 
show that two elements in the same right coset of N (a) in G, yields the same 
conjugate of a in G, where as two elements in different cosets of N (a) in G 
gives rise to different conjugate of a in G. In this way we shall have a 1 − 1 
correspondence between conjugate of a in G and the right cosets of N (a) in G. 
Suppose x, y ∈ G are in the same right cosets of N (a) in G. Then y = nx where n 
∈ N (a), [∵ y ∈ N (a) · x, y = nx] ⇒ y−1 = (nx)−1 = x−1n−1; y−1ay = x−1n−1ay  =  
x−1n−1anx  =  x−1(n−1an)x  = x−1ax = x−1ax. Hence, x and y result in the same 
conjugate of a in G. In other wards if x and y are in different right cosets of N 
(a) in G. 
Claim that x−1ax y−1ay. Suppose not x−1ax = y−1ay. Premultiply by 
y and post multiply by x−1, then yx−1axx−1 = y(y−1ay)x−1 ⇒ yx−1a = ayx−1 ⇒ 
(yx−1)a = a(yx−1) ⇒ yx−1 ∈ N (a) [∵ ab−1 ∈ H ⇔ Ha = Hb] ⇒ N (a) · y = N (a) · x 
⇒ x and y  to be in the same right cosets of N (a) in G ⇒⇐ to the fact that x 
and y are in different right coset of N (a) in 
G. ∴ x−1ax ƒ= y−1ay. Hence x and y yield the different conjugate of a in G if they 
are in different right cosets of N (a) in G. ∴ The number of elements conjugate to 
a in G = number of distinct right cosets of N (a) in G. (i.e.) the number of elements 
conjugate to a in G = the index of normaliser of a in G. (i.e.) Ca = O(G) . Hence, the 
theorem. 

Corollary 2.9 

O(G) = 
Σ  O(G) 

O(N (a)) , ∀a ∈ G 
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∈ 

2 

∈ 
∀ 

· · 
· 

2 

 

+ is well define: 
Suppose [a, b] = [a′, b′] and [c, d] = [c′, d′], then [a, b]+[c, d] = [a′, b′]+[c ′, d′]. To 
Prove: [ad+bc, bd] = [a′d′ +b′c′, b′d′]. It is enough to prove (ad+bc)b′d′ = bd(a′d′ + 
b′c′). Now, [a, b] = [a′, b′] ⇒ ab′ = ba′ (1) 
and [c, d] = [c′, d′] ⇒ cd′ = dc′ (2) 

 
(ad + bc)b′d′ = adb′d′ + bcb′d′ 

= ab′dd′ + bb′cd′ 

= ba′dd′ + bb′dc 

= bd(a′d′ + b′c′) 

 
∴ + is well defined. 
+ is closed: 
Let [a, b], [c, d] ∈ F . Then D is an integral domain, bd ƒ= 0. Now, [a, b] + [c, d] = [ad 
+ bc, bd] ∈ F [∵ bd ƒ= 0]. ∴ + is closed. 
+ is associative: 

 
([a, b] + [c, d]) + (e, f ) = [ad + bc, bd] + (e, f ) 

= [(ad + bc)f + (bd)e, (bd)f ] 

= [adf + bcf + bde, bdf ] 

= [adf + (bcf + bde), bdf ] 

= [a(df ) + b(cf + de), bdf ] 

= [a, b] + [cf + de, df ] 

= [a, b] + ([c, d] + [e, f ]) 

 
∴ + is associative. 

Additive identity: 
[0, b] F acts as zero element for this addition. For [a, b] + [0, b] = [ab + 0, b2] = 
[ab, b2] = [a, b]. 
Additive inverse: 
[−a, b] acts as a identive inverse of [a, b]. For [−a, b]+[a, b] = [−ab + ba, b ] = [0, b ]. 
+ is commutative: 
[a, b]+[c, d] = [ad+bc, bd] = [bc+ad, bd] = [cb+da, bd] = [c, d]+[a, b] [a, b]+ [c, d] F. 
∴ + is commutative. 
∴ (F, +) is an abelian group. 

is well defined: 
Suppose [a, b] = [a′, b′] and [c, d] = [c′, d′]. To Prove [a, b] [c, d] = [a′, b′] [c′, d′] 
(i.e.) [ac, bd] = [a′c′, b′d′]. It is enough to prove that (ac)(b′d′) = 
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m 

m1 
d a1  

∵ 

m m1 b 

 

 d λ(x), where d = (c0, c1, c2, ..., cn), λ(x) is primitive and d and m are integers. 
Similarly v(x) = d1 l1(x), where d1 and m1 are integer and l1x is 
primitive. ∴ f (x) = u(x) · v(x) = d · · λ(x)l1(x) =  λ(x)l1(x)............... (2) 
where a = dd1 and b = mm1 are integers ⇒ bf (x) = aλ(x)l1(x). .................... (3) 
⇒ c(bf (x)) = c(aλ(x)l1(x)) ⇒ bc(f (x)) = ac(λ(x)l1(x)) ⇒ b = a .......................... (4) 
[ f (x), l1(x), λ(x) are primitive, their content is 1].  From (2) and (4), f (x) = 
λ(x)l1(x). ∴ f (x) can be factored as a product of two polynomial having two 
integer coefficient. [λ(x) and l1(x) are polynomial having integer coefficient]. 
Hence the theorem. 

 

Corollary 3.68 If an integer monic polynomial factors as the product of two non-
constant polynomials having rational coefficients then it factors as the product of 
two integer monic polynomials. 
Proof: f (x) is an integer monic polynomial and factored as a product of two 
non-constant polynomials having rational coefficients. (i.e.) f (x) is a primitive 
polynomial factored as the product of two polynomial having rational 
coefficients. By Theorem 3.67 f (x) can be factored as product of two 
polynomials having integer coefficients. Let f (x) = p(x) · r(x), where p(x), r(x) are 
polynomial with integer coefficient. Let p(x) = a0 + a1x + a2x2 + ... + anxn and r(x) 
= b0 + b1x + b2x2 + + bmxm, where ai’s and bj’s 
are integers. ∵ f (x) is monic, leading coefficient of f (x) is 1. Then leading 
coefficient of p(x) · r(x) = 1 ⇒ an = bm = 1 ⇒ either an = bm = 1 (or) an = bm = −1. 
∴ In either case, p(x), r(x) are integer monic polynomials. Hence f (x) can be 
factored as the product of two integer monic polynomials. 
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Example 4.27 In the vector space F (n) = Vn(F ) = {(α1, α2, ..., αn)}. Then the vector 
space S = {e1, e2, ..., en} where e1 = {1, 0, ..., 0}; e2 = {0, 1, 0, ..., 0}; 
...; en = {0, 0, ..., 1} is linearly independent. Let λ1, λ2, ..., λn ∈ F. Then 
λ1e1+λ2e2+...+λnen = 0 ⇒ λ1(1, 0, ..., 0)+λ2(0, 1, ..., 0)+...+λn(0, 0, ..., 1) = 
0 ⇒ (λ1, 0, ..., 0) + (0, λ2, ..., 0) + (0, 0, ..., λn) = 0 ⇒ (λ1, λ2, ..., λn) = 0 ⇒ 

λ1 = 0, λ2 = 0, ..., λn = 0. 

Remark 4.28 If the set of vector S = {v1, v2 .................. vn} is linearly independent 

then none of the vector v1, v2, ..., vn  be ̇0. 

Example 4.29 Show that the set S = {(1, 2, 4), (1, 0, 0), (0, 1, 0)(0, 0, 1)} is a linearly 
dependent subset of vector space R(3) where R is the field of Real numbers. 
Solution: Let λ1 = 1, λ2 = −1, λ3 = −2, λ4 = −4. Then 1(1, 2, 4) + 
(−1)(1, 0, 0)+(−2)(0, 1, 0)+(−4)(0, 0, 1) = (1, 2, 4)+(−1, 0, 0)+(0, −2, 0)+ 

(0, 0, 4) = (0, 0, 0). ∴ Given set is linearly dependent. 

Lemma 4.30 If v1, v2, ......... , vn are linearly independent then every element in 
their linear span has a unique representation in the form, λ1v1 + λ2v2 + .................. + 

λnvn with λi ∈ F. 

Result 4.31 If v1, v2, ..., vn ∈ V then either they are linearly independent or some 
vk is the linear combination of the preceding one’s. If V is a finite dimensional vector 
space then it contains a finite set v1, v2, ..., vn of linearly independent elements 
whose linear span is V . 

 

Definition 4.32 Basis: A subset S of a vector space V is called a basis  of V if S 
consists of linearly independent elements and V  = L(S).  Let set S consisting of 
vectors e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1) is a basis of 
F (3). 

 

Result 4.33 1. If V is a finite dimensional vector space and if v1, v2, ............. , vm 

is span V then some subsets of v1, v2, ..., vm forms a basis of V . 

2. If v1, v2, ..., vm is a basis of V over F if w1, w2, ..., wm in V are linearly 
independent over F then m ≤ n. 

3. If V be a finite dimensional vector space  over F  then any two ba- sis of V  
have the same number of elements. For example, S1 = 
{(1, 0, 0), (0, 1, 0), (0, 1, 1)} and S2 = {(1, 0, 0), (1, 1, 0), (1, 1, 1)} are 

two basis of the vector space F(3). 

4. F (n) ∼= F (m) iff n = m. 

5. If V  be a finite dimensional vector space over a field F  then V  ∼= F (n) for a 
unique integer n, infact n is the number of elements in any basis V over F. 
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2. dim(A(w) = dim(V ) − dim(W ). 
∼ 

3. V̂  /A(W ) = Ŵ . 
 

 

Linear Transformation: 
We know that Hom(V, W ), the set of all vector space homomorphisms of V into W 
is a vector space over the field F . In this section we are very much interested on 
Hom(V, V ). 

 

Definition 4.45 An associative ring A is said to be an algebra over F  if A 

is a vector space over a field F such that a, b ∈ A and α ∈ F, α(ab) = (αa)b. 
 

Remark 4.46 Every algebra A over a field F  is a vector space over a field 

F. Is the converse true? 
 

Result 4.47 Hom(V, V ) is an algebra over F. 
Proof: Let T1, T2 ∈ Hom(V, V ). Define + and · as follows, T1 + T2 : V → V by v(T1 +T2) 
= vT1 +vT2 and T1 ·T2 : V → V by v(T1 ·T2) = (vT1)T2 ∀v ∈ V . We shall first prove that 
Hom(V, V ) is a ring. Let α, β ∈ F and v1, v2 ∈ V , 

(αv1 + βv2)(T1 + T2) = (αv1 + βv2)T1 + (αv1 + βv2)T2 

= (αv1)T1 + (βv2)T1 + (αv1)T2 + (βv2)T2 

= α(v1T1) + β(v2T1) + α(v1T2) + β(v2T2) 

= α(v1T2) + β(v2T1 + v2T2) 

= α(v1(T1 + T2)) + β(v2(T1 + T2)) 

∴ T1 + T2 ∈ Hom(V, V ) ⇒ + is closed. 
Let T1, T2, T3 ∈ Hom(V, V ). Then T1+(T2+T3) = (T1+T2)+T3 ∀T1, T2, T3 ∈ 
Hom(V, V ) ⇒ + is Associative. 
0 : V → V defined by v0 = 0 ∀v ∈ V serve as additive identity element. For 0 + T1 = 
T1 + 0 = T1 ∀T1 ∈ Hom(V, V ). 
Inverse of T1 is −T1 defined by, v(−T1) = −(vT1) ∀v ∈ V . Since T1+(−T1) = (−T1 + T1) = 0 
for v(T1 + (−T1)) = vT1 + v(−T1) = vT1 + (−vT1) = 0. Similarly v(−T1 + T1) = 0 ⇒ T1 + (−T1) 
= (−T1) + T1 = 0. 
v(T1 + T2) = vT1 + vT2 [vT1, vT2 ∈ V and (V, +) is abelian] =vT2 + vT1 = 
v(T2 + T1) ⇒ T1 + T2 = T2 + T1. ∴ + is commutative. Hence 
(Hom(V, V ), +) is abelian group. Now, 

(v1 + v2)(T1 · T2) = ((v1 + v2)T1) · T2 

= (v1T1 + v2T1) · T2 

= (v1T1)T2 + (v2T1)T2 

= v1(T1 · T2) + v2(T1 · T2) 

4. A(A(W )) = W. 
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0 1 2 k 

0 1 2 k 

α0 

1 2 k 

1 2 k 

1 2 k 

 

Remark 4.64 If V is finite dimensional over F then an element in A(V ) 

which is right invertible is invertible. 
 
 

Theorem 4.65 If V is finite dimensional over F, then T ∈ A(V ) is invert- ible iff the 
constant terms of the minimal polynomial for T is not zero. 
Proof: Let p(x) = α0 + α1x + α2x2 + ... + αkxk be the minimal polynomial for T . 
Assume that α0 ƒ= 0 and p(T ) = 0. To prove: T is invertible. Since p(x) is a minimal 
polynomial for T. 

 

p(T ) = 0 ⇒ α0 + α1T + ..... + αkTk = 0 .................... (1) 

α0 = −(α1T + .......... + αkTk) 

α = −(α  + α T + ... + α  Tk−1)T α = T 

(−α − α T + ... − α Tk−1) 
1 ⇒ 1 = T ( (−α − α 

 
 

− ... − α Tk−1)) 

α0 
1 2 k 

1 1 = T (− (α + α 
 

 

+ ... + α Tk−1)) 

α0 
1 2 k 

 

Let S = −  1  (α1 + α2 + ... + αkT k−1). Clearly, S =ƒ    0 and T S = 1 similarly ST  = 1. Thus 
ST  = TS = 1. T  is invertible. Conversely, Suppose that T  is invertible. To prove: α0 
ƒ= 0. Suppose not, α = 0. From(1), 

 
α1T + α2T 2 + ... + αkTk = 0 (α + 

α T + ... + α Tk−1)T = 0. 

 
Since T is invertible, T −1 exist. Multiplying the above relation t−1, 

 
⇒ ((α T + α T 2 + ... + α Tk)T )T −1 = 0T −1 = 0 

⇒ α T + α T 2 + ... + α Tk−1 = 0 ................... (2) 

 
Let q(x) = α1x + ... + αkxk−1. By(2), q(T ) = 0. (i.e.) T satisfy the polynomial q(x) of 
degree k − 1, which is a contradiction to the degree of minimal polynomial for T , 
which is k ⇒⇐ shows that α0 ƒ= 0. 

 
 

Corollary 4.66 If V is finite dimensional over F and if T ∈ A(V ) is in- vertible then T 
−1 is a polynomial expression in T over F. 
Proof: Let p(x) = α0 + α1x + α2x2 + + αkxk with αk ƒ= 0 be the minimal 

Preview from Notesale.co.uk

Page 60 of 109



59 
 

 

polynomial of T . 
 

p(T ) = 0 ⇒ α0 + α1T + α2T 2 + ... + αkTk = 0 

⇒ α0 = −(α1T + α2T 2 + ... + αkTk) 

α0 = (−α1)T + (−α2)T 2 + ... + (−αk)Tk 

1 = (− 
α1 )T + (− 

α2 )T 2 + ... + (− 
αk )Tk 

α0 α0 α0 

1 = ((− 
α1 

) + (− 
α2 

)T + ... + (− 
αk 

)Tk−1)T 
α0 α0 α0 

1 · T −1 = ((− 
α1 

) + (−α /α )T + ... + (− 
αk 

)Tk−1)T · T −1 
α0 

2 0 
α0

 

T −1 = β + β T + ... + β Tk−1 

1 2 k 
 

where β1 = (− α1 ), ..., βk = (− αk ). ∴ T −1 is a polynomial expression in T 
α0 α0 

over F . 
 

Corollary 4.67 If V is a finite dimensional vector space over a field F and if T ∈ A(V 
)  is singular then there exists S  ƒ=  0  in A(V )  such that ST = TS = 0. 
Proof: Let p(x) = α0 + α1x + α2x2 + ... + αkxk  be a minimal polynomial of T over F . 
(i.e.)  p(T ) = 0 ⇒ α0 + α1x + α2x2 + ... + αkxk  = 0.  Since T is singular (i.e.) T is non-
invertible by Theorem 4.65, α0 = 0.  ∴  α1T  + α2T 2 + ... + αkTk = 0 ⇒∴ (α1 + α2T + 
... + αkTk−1)T = 0 (1) 
Let S = α1 + α2T + ... + αkTk−1thenS 0 (∵ α1 + α2x + α3x2 + ... + αkxk−1 
is of lower degree than p(x)). From(1), ST = 0. Similarly TS = 0. ∴ ST = 

TS = 0, where S ƒ= 0. 
 

Corollary 4.68 If V is a finite dimension over F and if T ∈ A(V ) is right invertible 
then it is invertible. 
Proof: Given T ∈ A(V ) is right invertible. Then there exists U ∈ A(V ) such that TU 
= 1 (1) 
To prove: T is invertible. Suppose T is not invertible.  (i.e.)  T  is sin- gular,  then by  
Corollary  4.67,  there exists S  ƒ=  0 in A(V ) such that   ST = TS = 0 (2) 
From (1), TU = 0 

 

⇒ S(TU ) = S · 1 

⇒ (ST )U = S 

⇒ 0 · U = S by(2) 

⇒ S = 0 

⇒⇐ S ƒ= 0 

This contradiction shows that T is invertible. 
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Theorem 4.69 If V is finite dimensional over F, T ∈ A(V ) is singular iff 
v ƒ= 0 in V such that vT = 0. 
Proof: Assume that T is singular. By Corollary 4.67 there exists S ƒ= 0 ∈ 
A(V ) such that ST  = TS = 0 ................. (1) 
Since S ƒ= 0 in A(V ), there exists w ∈ V such that wS ƒ= 0. Let v = wS then v ƒ= 0 in V,  
vT  = (wS)T  = w(ST ) = w0̄ = 0 by(1) ⇒ vT  = 0, v ƒ= 0.  ∴ There exists v ƒ= 0 in V such 
that vT = 0.  Conversely, suppose that there exists v ƒ= 0 in V such that vT  = 0.  To 
prove:  T  is singular. Suppose not, T is invertible. Then there exists U ∈ A(V ) such 
that UT = TU = 1. Now, TU = 1 ⇒ v(TU ) = v · 1 (2) 
v(TU ) = (vT )U = 0 · U = 0 → (3) 

From (2) and (3), v = 0 ⇒⇐ to v ƒ= 0. ∴ T is singular. 

Definition 4.70 Let T ∈ A(V ), then (range of the linear transformation 

T) Range of T = {vT/v ∈ V } = V T 
 

Remark 4.71 (1) Range of T is a subspace of V 
Proof: Let u, v ∈ V T, α, β ∈ F . Now (αu + βv)T = (αu)T + (βv)T = α(uT )+ β(vT ) 
∈ V T ⇒ αu + βv ∈ V T. ∴ V T is a subspace of V. ∴ Range of T is a subspace of 
V . 
(2) If V T = V then T is onto. 

 

Theorem 4.72 If V is finite dimensional over F, then T ∈ A(V ) is regular iff T maps 
V onto V . 
Proof: Suppose T is regular. To  prove:  T  is onto.  Let v  ∈  V  consider vT −1. Now, 
(vT −1)T = v(t−1T ) = v · 1 = v ⇒ v = (vT −1)T, v ∈ V . (i.e.) every element v ∈ V has 
pre-image vT −1 under T in V. ∴ T is onto. Conversely, suppose that T is onto. To 
prove:  T  is regular.  Suppose not, T is singular, we must show that T is not onto. 
Since T is singular, by Theorem  4.69, there exists v1 ƒ= 0 in V  such that v1T  = 0̇ 
(̇0 : V  → V ). Suppose α1v1 = 0 ⇒ α1 = 0 ⇒ v1is linearly independent. Since {v1} is 
linearly independent in the finite dimensional vector space. Since V is finite 
dimensional, we can find vectors v2, v3, ..., vn such that {v1, v2, v3, , vn} 
form a basis of V where dim(V ) = n. ∴ V T is generated by w1 = v1T, w2 = 
v2T, ..., wn = vnT . Since w1 = v1T = 0, V T is spanned by v2T, v3T, , vnT . (i.e.) V T is 
spanned by w2, w3, ..., wn  ∴  dim(V T )  ≤  (n − 1)  <  n  = dim(V ) ⇒ dim(V T ) < 
dim(V ) ⇒ V T ⊂ V ⇒ V T ƒ= V ⇒ T is not onto. 

Note 4.73 The above theorem can be replaced as T is regular ⇔ dim(V T ) = 

dim(V ) (i.e.) V T = V . 
 

Remark 4.74 The above theorem suggest that we could use dim(V T ) not only as 
a test for regularity but even as a measure of degree of singularity for a given T ∈ 
A(V ). 
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Consequently, p(x) is the minimal polynomial of STS−1 also let g(x) be the minimal 
polynomial  of  STS−1 (i.e.)Sg(T )S−1  =  0  ⇒  Sg(T )S−1  = 0 ⇒ g(T ) = 0. (i.e) T 
satisfies the polynomial of g(x). Let h(x) be the polynomial of degree less than the 
degree of g(x) and h(x) = 0. Again h(STS−1) = Sh(T )S−1 = 0.  (i.e.)  STS−1 satisfies 
the polynomial h(x)   and deg(h(x)) < deg(g(x)), which is contradiction. 
Consequently, g(x) is a minimal polynomial of T also. Hence the theorem. 

Definition 4.85 Let λ be a characteristic root of T ∈ A(V ) the element v ƒ= 0 in 
V is called characteristic vector of T belonging to λ if vT = λv. (Theorem 4.81 
guarantees the existence of such a characteristic vectors in V corresponding to λ 

Theorem 4.86 If λ1, λ2, ..., λk are distinct characteristic roots of T ∈ A(V ) and v1, 
v2, ..., vk are characteristics vectors of T belonging λ1, λ2, ..., λk re- spectively then 
v1, v2, ..., vk are linearly independent over F. 
Proof: Case(i): If k = 1 then there is only one characteristic vector v1 ƒ= 0 in V which 
is linearly independent. 
Case(ii): If k > 1, To prove: v1, v2, ..., vk are linearly independent. Suppose the 
characteristic vector v1, v2, ..., vk are linearly dependent over F . Then there exists 
scalars α1, α2, ..., αk not all zero in F such that α1v1 + α2v2 + 
... + αkvk = 0. Without loss of generality, let us assume that the shortest relation 
with non-zero coefficients (by suitably renumbering) 
β1v1 + β2v2 + ... + βjvj = 0 
where β1 = β2 = ... = βj ƒ= 0 
Since λi’s are characteristic roots we have 
viT = λivi, ∀i 

By equation(1), 
 

(β1v1 + β2v2 + ... + βjvj)T = 0 · T β1v1T + 

β2v2T + ... + β jvjT = 0 

β1(v1T ) + β2(v2T ) + ... + βj(vjT ) = 0 

β1λ1v1 + β2λ2v2 + ... + βjλjvj = 0 (β1λ1)v1 + 

(β2λ2)v2 + ... + (βjλj)vj = 0 .................................. (2) 

λ1 × (1) ⇒ λ1β1v1 + λ2β2v2 + ............... + λ1βjvj = 0 

(2) − (3) ⇒ (λ2 − λ1)β2v2 + (λ3 − λ1)β3v3 + ... + (λj − λ1)βjvj = 0 ............................... (4) 

Now, (λj − λ1)βj ƒ= 0, i = 2, 3, ..., j (∵ λj − λ1 ƒ= 0, i > 1 and βj ƒ= 0). (i.e.) 

γ2v2 + γ3v3 + ......... + γjvj = 0 ............ (5) 
where γ2  = λ2 − λ1  ƒ= 0, γ3  = λ3 − λ1 0, ..., γj  = (λj − λ1) 0 ⇒ 
v2, v3, ..., vj are linearly dependent. By relation (5) we have produced a shorter 
relation than that of equation (1) between v1, v2, ..., vk ⇒⇐. This contradiction 
proves that v1, v2, ..., vk are linearly independent. For example, t ∈ V3(F ) number of 
characteristics root of T ≤ 3. 
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triangular if 
 

v1T = α11v1 

v2T = α21v1 + α22v2 

v3T = α31v1 + α32v2 + α33v3 

. 

. 

. 

viT = αi1v1 + αi2v2 + αiivi 

. 

. 

. 

vnT = αn1v1 + αn2v2 + αnnvn. 

 
(i.e.) if viT is a linear combination only if vi and its predecessor in the basis. 

 
Theorem 4.94 If T ∈ A(V ) has all its characteristic root in F, Then there is a basis of 
V in which the matrix of T is triangular. 
Proof: We prove this theorem by induction on the dimension of V over F . If dimF 
(V ) = 1. Then every matrix representation of T ∈ A(V ) is a scalar. (i.e.) A matrix of 
order 1 × 1 which is trivially a triangular matrix. Suppose the theorem is true for all 
vector spaces over F of dimension (n − 1). Let V be a vector spaces of dimension n 
over F . Since the Linear Transformation T on V has all its characteristic root in F . 
Let λ1 ∈ F be a characteristic root of T . Then there exists a non-zero vector v1 ∈ 
V such that v1T = λ1v1. Let W = {αv1|α ∈ F } then W is a subspace of V of dimension 
1. Then, 

 

WT = {(αv1)T |α ∈ F, v1 ∈ V } 

= {α(v1T )|α ∈ F, v1 ∈ V } 

= {αw1|w1 ∈ V, α ∈ F } 

 
⇒ WT ⊂ W.  ∴ W is a subspace of V  of dimension 1 and invariant under T . 

Let V̄ = V/W  then dim(V̄ ) = dim(V/W ) = dim(V ) − dim(W ) = (n − 1). 
By Lemma  4.92, T  induces the linear transformation T̄ on V̄ . Also minimal 

polynomial of T̄ over F divides minimal polynomial of T over F . ∴ All the roots of 
minimal polynomial of T̄   being the roots of minimal polynomial of 

T  must be in F .  Thus V̄  and T̄ satisfies the hypotheses of the theorem. 
Since dim(V̄ ) = n − 1, then by induction hypotheses there is a basis consists 

of the vector v̄2, v̄3, ..., v̄n over V̄ over F  in which the matrix of T̄ is triangular 
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v̄2T̄ = α22v̄2 

v̄3T̄ = α32v̄2 + α33v̄3 

v̄4T̄ = α42v̄2 + α43v̄3 + α44v̄4 

. 

. 

. 

v̄nT̄ = αn2v̄2 + αn3v̄3 + ... + αnnv̄n 

 

Let v2, v3, ..., vn be the elements of V  mapping into v̄2, v̄3, ..., v̄n of V̄ respec- tively. 
(i.e.) v̄2 = v2 + W ; v̄3 = v3 + W ; ...; v̄n = vn + W . Then v1, v2, ..., vn form a basis of V . 
Since v̄2T̄ = α22(v2 + W ) = α22v2 + W 

(v2 + W ) + T̄ = α22v2 + W v2T + 

W = α22v2 + W 

⇒ v2T − α22v2 ∈ W 

⇒ v2T − α22v2 is a multiples of v1, say α21v1 

⇒ v2T − α22v2 = α21v1 

v2T =  α21v1 + α22v2 Similarly 

v3T = α31v1 + α32v2 + α33v3 

. 

. 

. 

viT = αi1v1 + αi2v2 + αiiv3 (i = 1, 2, ..., n) 

 
(i.e.) the basis v1, v2, ..., vn of V over F provides us with a basis where every viT is a 
linear combination of vi and its predecessors hence the matrix of T in the basis 
{v1, v2, ..., vn} is triangular. 

 
Theorem 4.95 If V is a dimensional over F and T ∈ A(V ) has matrix m1(T ) in the 
basis v1, v2, ..., vn and m2(T ) = Cm1(T )C−1.  In fact if S is the linear transformation 
of V defined by viS = wi for i = 1, 2, ..., n then C can be chosen to be m1(S). 

 
Remark 4.96 The above theorem can be restated as if there is a matrix  A ∈ Fn has 
all its characters root in F then there is matrix C ∈ Fn  such that CAC1 is a triangular 
matrix. 
Proof: Let A ∈ Fn has all its characteristic roots in F . A defines a linear 
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0 3i 
; λ 

0 −3i 
⇒ λ = λ 

 

2. (A + B)∗ = A∗ + B∗ 

 

3. (AB)∗ = B∗A∗ for all A, B ∈ Fn 

 

Definition 4.117 Suppose F be a field of complex numbers and that adjoint 

∗ on Fn is the hermitian adjoint. The matrix A is called hermitian if A∗ = 
A. 

 

 
Definition 4.118 A is called skew hermitian if A∗ = −A 

 
 

Remark 4.119 . 

 

1. Any square matrix A can be uniquely written as a sum of a hermitian and a 
skew hermitian matrices 
A = 1 (A + A∗) + 1 (A − A∗). 

2 2 

 

2. If A ƒ= 0 ∈ Fn then trace of AA∗ > 0. 

 

3. If A1, A2, ..., Ak ∈ Fn and if A1A∗ + A2A∗ + ... + AkA∗ = 0 then 

A1 = A2 = ... = Ak. 
1 2 k 

 

4. If λ is a scalar matrix then λ∗ = λ̄. 
 
 

Example 4.120 
 

λ = 

.
3i 0 

Σ 

∗ 
.

−3i 0 
Σ 

; λ̄ = 

.
−3i 0  

Σ 

∗ ¯ 

 

 
Result 4.121 The characteristics roots of a hermitian matrix are all real (i.e.) if a 
complex number λ is a characteristic roots of a hermitian matrix then λ must be 
real. 

Proof:  Let A  be a hermitian matrix then A  = A∗  (i.e.)  Ā′   = A  and λ 
be a characteristic root of T  ∈ A(V ).  Let X  be a characteristics vector 

= 
0 −3i 
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n n−1 

 

 

∴ k1 = k2 = ... = km = 0 

k1 = 0 ⇒ f11w1 + f12w2 + ... + f1nwn = 0 

k2 = 0 ⇒ f21w1 + f22w2 + ... + f2nwn = 0 

· 

· 

· 

km = 0 ⇒ fm1w1 + fm2w2 + ... + fmnwn = 0  .................. (5) 

Since {w1, w2, ..., wn} forms the basis of K over F they are linearly indepen- dent 
over F . 
from (5) we have, 

 

f11 = f12 = ... = f1n = 0 

f21 = f22 = ... = f2n = 0 

· 

· 

· 

fm1 = fm2 = ... = fmn = 0 

(i.e.) fij∀i = 1, 2, ..., m, j = 1, 2, ..., n. ∴  S = {viwj|i = 1, 2, ..., m, j = 1, 2, ..., 
n} is linearly independent. (6) 
From (2) and (3), the set S which contains mn elements forms the basis of 
L over F. ∴ [L : F ] = dimF (L) = mn = [L : K][K : F ]. (7) 
Since [L : K] and [K : F ] are finite ⇒ [L : F ] is finite by (7). ∴ L is a finite extension 
of F . 

Corollary 5.10 If L is a finite extension of F and K is a subfield of L 
which contains F, then [K : F ]/[L : F ]. 
Proof: Given L, K, F are fields, such that L ⊃ K ⊃ F and [L : F ] is finite. Clearly any 
element in L, linearly independent over K, linearly independent over F . From the 
assumption [L : F ] is finite we come to conclusion that [K : F ] is finite. By 
previous theorem, [L : F ] = [L : K][K : F ]. Hence [K : F ]/[L : F ]. 

Definition 5.11 An element a ∈ K is said to be algebraic over F if there exists 
elements α0, α1, α2, ..., αn ∈ F, not all zero such that α0a + α1a + 
... + αn = 0. 

Remark 5.12 if p(x) = α0xn + α1xn−1 + ... + αn, αi ∈ F. ∴  α0an + α1an−1 + ... + αn = 0 
⇒ p(a) = 0. (i.e.) a ∈ K is algebraic over F if there is a non-zero polynomial p(x) 
∈ F [x] which satisfies a. (i.e.) p(a)=0. 
For example, p(x) = x3 + 3x2 + 3x + 1 ⇒ p(−1) = 0 ⇒ −1 is algebraic over 

Q and 1 is not algebraic over Q. 
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Let α, β ∈ F such that αψ = βψ, 

V + α = V + β 

(α − β) ∈ V = p(x) 

(α − β) = f (x)p(x) for some f (x) ∈ F [x] 

⇒ f (x) = 0 

⇒ (α − β) = 0 

⇒ α = β ψ 

is 1 − 1. 

(ii) ψ is homomorphism: 

(α + β)ψ = V + (α + β) 

= (V + α) + (V + β) 

= αψ + βψ 

∴ ψ is a homomorphism. 

Thus ψ is an isomorphism from F  into E. Let F̄ be the image of F  into E under ψ. 
Let F̄ = {α + V |α ∈ F }. Thus ψ  is an isomorphism of F  onto F̄ and F̄ is a subfield 
of E  isomorphic to F  by the mapping ψ : F [x] → E, by f (x)ψ = f (x) + V and the 
restriction of ψ to F induces an isomorphism of F  onto F̄. If we identify F  and F̄ 
under this isomorphism we can consider E to be an extension of F . 
Claim: E is a finite extension of F of degree n equal to degree of p(x). First 
we shall prove that the n elements {1+V, x+V, (x+V )2 = x2 +V, (x+V )3 = x3 + V, ..., (x 
+ V )n−1 = xn−1 + V } form a basis of E over F . [E : F ] = n. Finally we shall show that 
p(x) has a root in E. Let p(x) = β0 + β1x +  β2x2 + ... + βkxk where β0, β1, β2, ..., βk ∈ 
F . First Let us make p(x) be a polynomial over E with help of the identification we 
have made between F 
and F̄. For convenience of notation Let us denote the element xψ = x + V 
in the field E as aβk by βk + V, p(x) = (β0 + V )+(β1 + V )x+ ... +(βk + V )xk. We shall show 
that x + V ∈ E satisfies p(x). 

p(x + V ) = (β0 + V ) + (β1 + V )(x + V ) + ... + (βk + V )(x + V )k 

= (β0 + V ) + (β1 + V )(x + V ) + (β2 + V )(x2 + V ) + ... 

+ (βk + V )(xk + V ) 

= (β0 + β1x + β2x2 + ... + βkxk) + V 

= p(x) + V 

= v (∵ p(x) ∈ V ) 

= zero element of E. 

Thus (x + V ) satisfies p(x). ∴ An element x + V in the extension E satisfies the 
polynomial p(x) ∈ F [x]. The field E has been shown to satisfy all the 
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(f (x))τ ∗ = g(x)τ ∗ 

⇒ (α0xn + α1xn−1 + ... + αn)τ ∗ = (β0xm + β1xm−1 + ... + βm)τ ∗ 

⇒ α0
′ tn + α1

′ xn−1 + ... + αn
′   = β0

′ tm + β1
′ xm−1 +  .................... + βm

′
 

⇒ n = m and αi
′   = βi

′, i = 0, 1, .......... n 

⇒ n = m and (αi)τ = (βi)τ, i = 0, 1, 2 ........... n 

⇒ n = m and αi = βi, i = 0, 1, 2....n (∵ τ is 1-1) 

f (x) = g(x) 

τ ∗  is onto:  Let γ0
′ tn + γ1

′ xn−1 + ... + γn
′    be any element of F ′[t], γi

′   ∈ 
F ′  since τ  is onto,  there exists γ0, γ1, ..., γn  ∈  F  such that (γ0)τ   =  γ0

′ , (γ1)τ    =   
γ1

′ , ..., (γn)τ    =   γn
′ .     Now  γ0xn, γ1xn−1, ..., γn    ∈    F [x]  and (γ0xn, γ1xn−1, ..., γn)τ 

∗ = (γ0
′ tn + γ1

′ xn−1 + ... + γn
′ ).  ∴ τ ∗  is onto. 

τ ∗ is a homomorphism: To Prove: (f (x) + g(x))τ ∗ = f (x)τ ∗ + g(x)τ ∗ 

[f (x)+g(x)]τ ∗ 

= [α0xn + α1xn−1 + ... + αn + β0xm + β1xm−1 + ... + βm] 

= ((α0
′ xn + α1

′ xn−1 + ... + αn
′  ) + (β0

′ xm + β1
′ xm−1 + ... + βm

′   )) 

= (α0xn + α1xn−1 + ... + αn)τ ∗ + (β0xm + β1xm−1 + ... + βm)τ ∗ 

= f (x)τ ∗ + g(x)τ ∗ 

Hence τ ∗ is an isomorphism of F [x] onto F ′[t]. 

Remark 5.44 . 

1. Further if f (x) ∈ F [x] be simply taken as α where α ∈ F then 

(f (x))τ ∗ = ατ ∗ = ατ = α′. 

2. From the above theorem we conclude that factorisation of f (x) in F [x] 
result in like factorisation of f (x)τ ∗ = f ′(t) in F ′[t] and vice versa. In 
particular f (x) is irreducible in F [x] iff f ′(t) is irreducible in F ′[t]. 

Lemma 5.45 Let τ be an isomorphism of a field F onto a field F ′ defined by (α)τ = 
α′ ∀α ∈ F for an arbitrary polynomial f (x) = (α0xn + α1xn−1 + 

...+αn) ∈ F [x]. Let us define f ′(t) = α0
′ tn +α1

′ xn−1 +...+αn
′   ∈ F ′[t]. If f (x) 

is irreducible in F [x], show that there is an isomorphism τ ∗∗ of F [x]/f (x) 
onto F ′[t]/f ′[t] with the property that ατ ∗∗ = α′(x + f (x))τ ∗∗ = t + f ′(t). 
Proof: Let τ ∗ : F [x] → F ′[t] defined by f (x)τ ∗ = f ′(t). Then by Lemma 
5.43 τ ∗ is an isomorphism of F [x] onto F ′[t]. Let f (x) be irreducible in F [x] then f 
′(t) will be irreducible in F ′[t]. V = (f (x)) ideal generated by f (x) in F [x] and V ′ 
= (f ′(t)) ideal in F ′[t]. Now, f (x) and f ′(t) are irreducible both V and v′ are 
maximal ideal. F [x]/V  and F ′[t]/V  are fields. Define  τ ∗∗ : F [x]/V → F ′[t]/V ′ 
by (g(x) + V )τ ∗∗ = g(x)τ ∗ + V ′ = g′(t) + V ′. 
τ ∗∗ is well defined: For this we have to show that if V + g(x) = V + h(x) 
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