Py

Lemma 1.28 There is a 1- 1 correspondence between any two right cosets of H in G.

Theorem 1.29 Lagrange’s Theorem: If G is a finite group and H is a subgroup of G,
then O(H) is the divisor of O(G), converse of the Lagrange’s theorem need not be
true.

Examplel1.30 1. LetG={1,-1,i,-i}, H ={i,-1}. Then O(H)/0O(G)
but H is not a subgroup of G.

2. Llet G=S3={e, p1, p2, p3, P4, ps}, H={p - 1, p2}. Then O(H)/0O(G)
but H is not a subgroup of G.

Definition 1.31 Index: If H is a subgroup of G, the index of H in G is the number of
distinct right cosets of H in G. It is denoted by is(H).

Remark 1.32 jg(H) = %€
O(H)
Example 1.33 Let G = {Z1,, D1.}; H=1{0, 4, 8}. Then is(H) = 4 =12/3 =24

Definitidit).34 If G is a group and a € G. The order of a (period of a) is the least
positive integer m such that a™ = e. If no such integer exists, we say thaty\if of

infiniteorder. O
Example 1.35 Let G={1, -1, i, —i} ‘esa\ C

1a——1=>a—(1)2 1= o)
2.a=i=a*= ,‘ ’X_Og
%Q\Nn(zn, 5 0

é oW, O([2])—6{? %{@%HZH[ZH[ZH[Z] 0}

O[3] =4, O([6]) =

Example 1.37 Let (Z, +), e=0. Then 1 € Zis of infinite order. Corollary 1.38 If G is
a finite group and a € G, then O(a) divides O(G). Corollary 1.39 If G is finite and
a € G, then a°© = e,

Definition 1.40 Euler function @(n): (1) = 1, ¢(n) = number of posi- tive integers
less than n and relatively prime to n for n > 1.

©(8)=4(~1,3,5, 7 are relatively prime to 8), ¢(5) =4, ¢(7) =6, ¢(10) =

4, ¢(15) =
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Example 1.94

- b3
1234 =(12)(34) = even permutation
2143
_ 2
12345 =(12)(3)(45)=o0ddpermutation
21354

Result 1.95 A permutation can be written either as a product of an even number
of transpositions or as a product of an odd number of transpositions and not both.
Proof: Let G € S,
Suppose ¢ can be writtenasa product of X transpositionsin one wayand canbe
writtenasaproductofY transpositionsinanotherway. Considera polynomialin
variables x1, x2, ..., X, which are the elements of S.

Y

P (x1, X2, ..., Xn) = (xi — x;).
i<j

Let O € S, be a permutation on n-symbols 1, 2, ..., n. Let ¢ be act on \4
P (x1, X2, ..., Xn) by u

G:P(x1, X2 ..., Xpn) = - Xj) > \76 X,g(/))
e&,

It |s clear that Q , Xn) 2 % (x ‘ or example consider @ =
QN enP (X1, X2, ... X5 = ( X2 (X1 - X3)(X1 - X4)(X1 - X5)(X2 -
(x2 - (x —gﬁxs) =xs); P (X1, X2, ..., X5)) = (X3 — X5)(X3 — Xa)(X3
X1 (X3 - Xz)(X 1)\ X5 — X2)(X4 - X1)(X4 - X2)(X1 - Xz) —[(X1 - Xz)(Xl -
X3)(X1 = Xa) (X1 — R6)(X2=x3) (X2=Xa) (X2=X5) (X3—Xa) (X3—X5) (Xa=X5)] = =P (x1, X2, ..., X5).
Suppose &= (1, 2) € Sz; P (x1, x2) = (X1 — x2); HP (x1, x2)) = (x2 — x1) =
—(x1=x2) = =P (x3, x2) (i.e)The effect of a transposition on P is to change the sign of
P . Now the operation by a transposition (rs) where r < s has the following effects
onP.
(i) Any factor of P which contains neither the suffix r nor s remains un- changed
(i) Thesingle factor (x, —x;s) changes its sign by replacing r by s and s by
r
(iii) The remaining factor which contain either the suffix r (or) s but not both can
be grouped into the following 3 types of products.
(@) [(x1 = xr)(x1 = xs)][(x2 = x:) (X2 = Xs)]... [(Xr-1 = X¢)(Xr-1 = X5)]
(b) [0¢r = Xrs1) (Xrs1 = Xs)[(Xr = Xra2) (Xrs2 = X)L [(Xr = Xs-1) (Xs-1 = X5)]
() [0 = Xse1)(Xs = Xse1)][(Xr = Xse2)(Xs = Xs2)]...[(%r = Xa)(Xs — Xa)] On replacing

r by s and s by r, the signs of all types of products do not change. Hence effect
of the transposition (rs) on P is to change the sign of
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Another Counting Principle

Definition 2.1 /fa, b € G, then b is said to be a conjugate of a in G if there exists an
element ¢ € G such that b = cac. We shall write this conjugate relation as a ~ b.
(i.e.)a ~ b= bis conjugate toa = b =c"ac, c € G.

Lemma 2.2 Conjugation is an equivalence relation on G.

Proof: (i) ~ is reflexive:

Leta € G, thena=a'ae, a € G=a ~ aVa € G. -~ is reflexive.

(ii) ~ is symmetric:

Suppose,a~b=>b=clac, c€G. >a=cbct=(cY)b(c?) =

xbx, x=c1€G= b~ a.~issymmetric. (iii)~ is

transitive:

Supposea~bandb~c. Thena~b=>b=x"tax, xEG;b~c> c=y by,
y € G. Now, ¢ =y tby = y Y xtax)y = (y x Ya(xy) = (xy)ta(xy) =z'az, z=xy € G
= a ~ c. ~~is transitive.

Hence, ~ is an equivalence relation.

Definition 2.3 For any a € G, let C(a) = {x € G|x ~ a}, C(a) is the equival \st
a in G, under the relation ~. It is usually called the conjugate C@@J

Remark24C(a)-{xEG|x~a}-{x€w9a¢\EG|x y ay,yec-;}—
n

{ytay|y € G}. If consists of the ct el nts of the form x ax
as x ranges over G. Su er (a)isdenotedbyCa.
Sincetheuniono )v jugate clg, e(
\, \e G= éa @ U Clan)
Pee Q §
P 1+Cay+...+Ca, = Ca;
a€G

Where the summation runs over each element a in each conjugate classes.

Definition 2.5 If a € G, N (a), normaliser of a is defined as {x € G|ax =
xa}

Example 2.6 (i) G={1, -1, i, —-i}. Whena=1,N(a)=N(1)={1, -1, i, -i}=G;
Whena=-1, N (-1)=G.

(i) G = {Zs, @s}. a = [2], N (a) = N ([2]) ={[0], [1], [2], [3], [4]}

giii)f2 =j}3 ={e o, o Y, ¢ % N(p)={e o} N()={e &, P}, N(J?)=
e Y3 Y}
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Lemma 2.7 N (a) is a subgroup of G.

Proof: Letx,y € N(a)= ax=xa anday =ya .................... (1)

Now, a(xy) = (ax)y = (xa)y [by(1)] = x(ay) = x(ya) [by(1)] = (xy)a =

xy EN(a) Vx,y € N(q)............. (2)

Suppose x € N (a) = ax = xa = x 'a = ax™* [By premultiply and post multiply
byx =X TEN(Q) ccueeeeeeieeeeeeeee, (3)

By (2) and (3), N (a) is a subgroup of G.

Calculation for C(a):
letG =S3={e, @, Y, 0 - Y, Y- @ Y*} Clp) = {x x| x € S3} =
{e?ve, 000, Yoy, (@ - ) o(e - ¢), (¥ - o) Y - @), (V) e}
C(1,2)={e™(1, 2)e, (1, 2)(1, 2)(1, 2), ™1, 2), (@) M1, 2)(-4h), (¢ -
O L 2) (¢ - o), (P71, 2071 ={(123)(12)(123),(12)(12)(12),
(132)(12)(132),(13)(12)(13),(23)(12)(23),(231)(12)(132)}=
{(1 2), (102() ((2 3)} Cgcg) {<p, A L!f Y- o}

__0(Ss

(1,2) O(N(1,2)) 3 (1,2) O(N (1,2))

Theorem 2.8 If G is a finite group, then C, =°° ; In other wards, the n @ \)\L

of elements conjugate to a in G is the index ofN (a) el h
showthattwoelementsinthesamerightcosetof N(g) i i esame
conjugate of a in G, where astwoelements' ' sof |nG
givesrise to different conjugate of A In W ywes /g
correspondence between n G and t N(a)inG.
Supposex,y E@ nght cos en y nx wheren
€ N(a), [ w nx]=>y ,y ay xntay =
?‘(f) n- an)x a’g Hence X and y result in the same
co teofainG.In ot? xandyareln different right cosets of N
(a)inG.
Claim that xax y ay. Suppose not xlax = y~tay. Premultiply by

y and post multiply by x%, then yxlaxx® = y(ylay)x = yxla = ayx! =
wxYa=alyx)=yx*eN(a)[-ab*€EH S Ha=Hbl = N(a)-y=N(a)-x
= x and y to be in the same right cosets of N (a) in G =<« to the fact that x
and y are in different right coset of N (a)in

G. - xtax f= y ay. Hence x and y yield the different conjugate of a in G if they
are in different right cosets of N(a) in G. .~ The number of elements conjugate to
ain G = number of distinct right cosets of N (a) in G. (i.e.) the number of elements

conjugate to a in G = the index of normaliser of a in G. (i.e.) C, =9 . Hence, the
theorem.
O(N(a))
Corollary 2.9
> oG
0(6) = G vees

O(N(a)) ~
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+ is well define:

Suppose [a, b] =[a, b']and [¢, d] = [c, d1, then [a, b]+[c, d]=[a, b'1+[c, d]. To
Prove: [ad+bc, bd]=[a'd+b'c, b'd]. Itisenoughtoprove (ad+bc)b'd = bd(a'd +
b'c). Now, [a, bl =[a, b1 = ab' =ba (1)

and [c, d]=[c, d] = cd =dc (2)

(ad+bc)b'd =adb'd +bcb'd
=ab'dd +bb'cd
=ba'dd +bb'dc

=bd(a'd +b'c)

~ +is well defined.

+is closed:

Let [a, b], [c, d] € F. Then D is an integral domain, bd f= 0. Now, [a, b] fc, d] = [ad
+ bc, bd] € F [~ bd f=0]. . + is closed.

+ is associative:

([a, b] + [c, d]) + (e, f) = [ad + bc, bd] + (e, f)
= [(ad + be)f + (bd)e, (bd)f ] O \)\L
= [adf +bcf +bde, bdf] \e Cv
= [adf +(bcf + a

=[a

o (ONEEA0
e, P 20°

Addltlve |dent|ty.

[0, b] € F acts as zero element for this addition. For [a, b] + [0, b] = [ab + 0, b?] =
lab, b*] =[a, b].

Additive inverse:

[-a, b] actsasaidentiveinverse of [a, b]. For[-a, b]+[a, b] = [-ab+ba, b ]= [0, b2].

+ is éommutative:

[a, bl+[c, d] =[ad+bc, bd] = [bc+ad, bd] = [cb+da, bd] = [c, d]+[a, b] [a, b]+ ¢, d] F.
“ +isgommutative.

~ (F, +) is an abelian group.

- is well defined:

Suppose [a, b] = [a, bl and [, d] = [c, d]. ToProve [a, b] [c, d] = [a, b]] [c, d}
(i.e.) [ac, bd] = [a'c, b'd]. It is enough to prove that (ac)(b'd)=
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d/\(x) where d = (co, €1, €, ..., Cn), A(X) is primitive and d and m are integers.
S|m|IarIy v(x) =% /4(x), where d1 and m; are integer and /1x is

primitive. -~ f(x)=u(x)- v(x)— d. d - AX)(x)= AG)1(X) .o (2)
where a = ddy and b = mmy are integers = bf (x) = GAX)1(X).evvererrerreerernnn. (3)
= c(bf(x)) = c(aA(x)1(x)) = bc(f(x))=ac(A(x)1(x)) = b=a....cccceeeeeeeo. (4)

[+ f (x), l1(x), A(x) are primitive, their content is 1]. From (2) and (4), f(x) =
A(x)l(x). = f(x) can be factored as a product of two polynomial havingtwo
integer coefficient. [A(x) and /1(x) are polynomial having integer coefficient].
Hence the theorem.

Corollary 3.68 If an integer monic polynomial factors as the product of two non-
constant polynomials having rational coefficients then it factors as the product of
two integer monic polynomials.
Proof: f(x) is an integer monic polynomial and factored as a product of two
non-constant polynomials having rational coefficients. (i.e.) f (x)is a primitive
polynomial factored as the product of two polynomial having rational
coefficients. By Theorem 3.67 f (x) can be factored as product of two
polynomials having integer coefficients. Let f(x) = p(x)- r(x), where p(x), r(x) are
polynomial with integer coefficient. Let p(x) = ao+aix + ax*+... +a,x" and r(x)
=bo+b1x+bx*+ +bmx™, wherea/sand b;’s
are integers. ** f(x) is monic, leading coefficient of f(x) is 1. Then leading
coefficient of p(x) - r(x)=1=a,=bm=1= eithera,=bn=1(or) a,=bm == \)
. In either case, p(x), r(x) are integer monic polynomials. Hegc G
factoredastheproductoftw0|ntegermomcpolynom|aIs \é
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ple 4.27 In the vector space F™ = V,,(F ) = {(as, a, ..., an)}. Then the vector

space S={ey, e, ..., en} wheree; ={1,0, ..., 0};e2=4{0, 1, 0, ..., O};
en=1{0,0, ..., 1} is linearly independent. Let A1, A,, ..., A\n EF. Then
ArertAzer+...+Ane, =0= A4(1,0, ..., 0)+A2(0, 1, ..., 0)+...4+A4,(0,0, ..., 1) =

0= (

A4,0,...,0)+(0,A2...,0)+(0,0,..,4,) =0= (AL A3, ..., An) =0 =

A1=0, A2=0, ceey /\n=0.

Remark 4.28 If the set of vector S ={vi, Va.................. vn} is linearly independent
then none of the vector vi, v, ..., v, be0.

Exam

ple 4.29 Show that the set S ={(1, 2,4), (1,0, 0), (0, 1, 0)(0, 0, 1)} is a linearly

dependent subset of vector space R® where R is the field of Real numbers.
Solution: LetA;=1,A;=-1,A3=-2,A,=-4.Then 1(1, 2, 4) +
(-1)(1, 0, 0)+(-2)(0, 1, 0)+(-4)(0, 0, 1) = (1, 2, 4)+(-1, 0, 0)+(0, -2, 0)+

(OI OI

4) = (0, 0, 0). .- Given set is linearly dependent.

Lemmad4.30/fvy, v, ......... , Vn arelinearly independent then every element in
their linear span has a unique representation in the form, Aivi+Aava+.................. +
AnVn With A; € F.

Result 4.31 /f vy, v, ..., vy € V then either they are linearly independent or some

space

vk is the linear combination of the preceding one’s. If Vis a finite dimsnsion

then it contains a finite set vi, v, ..., Vo Of linearly inde elddlents

whose linear spanis V.

Defini

EB).

o

2.

ition 4.32 Basis: A subset S of %X Is caII d of VifS
consists of linearly mdepe M = L(S nSIstmg of
01

vectors e1=(1, 0, 0)

t‘ @ 1. If 4 IP ns:ona/ vectorspaceand ifvi, Va, ............. , Vm
b

is span V then some Subsets of vy, vy, ..., vm forms a basis of V.

If va, vy, ..., Vm is a basis of V over F if wi, w, ..., Wn in V are linearly
independent over F then m < n.

If V be a finite dimensional vector space over F then any two ba- sis of V
have the same number of elements. Forexample, S =
{(1/ O/ 0)/ (O/ 1; O)/ (0/ 1; 1)} and S; = {(1/ O/ O)/ (1/ 1/ O)/ (1/ 1/ 1)} are

two basis of the vector space F3).

. FM=F™ iffn=m.

If V be a finite dimensional vector space over a field F then V. =F\" for g
unique integer n, infact n is the number of elements in any basis V over F.

uk
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2. dim(A(w) = dim(V') - dim(W ).
3. \’)/A(W):W.
AAW )) =W

Linear Transformation:

We know that Hom(V, W), the set of all vector space homomorphisms of Vinto W
is a vector space over the field F . In this section we are very much interested on
Hom(V, V).

Definition 4.45 An associative ring A is said to be an algebra over F ifA
is a vector space over a field F such thata, b € A and o € F, a(ab) = (aa)b.

Remark 4.46 Every algebra A over a field F is a vector space over afield
F. Is the converse true?

Result 4.47 Hom(V, V') is an algebra over F.

Proof: Let Ty, T, € Hom(V, V). Define +and - as follows, T1+T,: V = V by v(T:1+T>)
=vli+vand T1:T2:V > V byv(Ti:T2) = (vT1) T2, Vv € V.. We shall first prove that
Hom(V, V)isaring. Leta, B € Fand vy, Vo EV,

(avi + Bv2)(T1 + T2) = (avi + Bv2) Ty + (avi + Bv,) T, e GO :
.

= (av1)T1 +(Bv2)T1 + (av

=a(viT1) +6(v 2T2
e, L6

T>) | ) l
T1+Tz \N-ls‘,‘close + 6% ! ﬁ
? om(V V) @zea) (Ti+TR)+T3 VT, To, T3 €
Vv,V

) = +is Associat
0:vV-> Vdefmed byvo=0 Vv € V serve as additive identity element. For0 + T; =
T.+0=T1VT1 € Hom(V, V).
Inverse of Ty is—T1 defined by, v(-T1) =-(vT1) Vv € V. Since T1+(-T1) = (-T1 + T1) =0
forv(T1+ (-T1)) =vT1+ v(-T1) =vT1 + (-vT1) = 0. Similarly v(-T1+ T1) =0= T1+(-T1)
= (—Tl) +T.:=0.
V(T1+ T2) =vT1 + vT2 [vTy, vT; € Vand (V, +) is abelian] =vT, + vT; =
V(T + T1) = T1 + T, = T, + T1. .. + is commutative. Hence
(Hom(V, V'), +) is abelian group. Now,

(V1 + Vz)(T1 . Tz) = ((V1 + Vz)Tl) -T2
= (V1T1 + V2T1) P
= (V1T1)T2+ (V2T1)T2
=vi(Ti - T2) +vo(T1 - T2)

uk
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Remark 4.64 If V is finite dimensional over F then an element in A(V )
which is right invertible is invertible.

Theorem 4.65 If V is finite dimensional over F, then T € A(V ) is invert- ible iff the
constant terms of the minimal polynomial for T is not zero.

Proof: Let p(x) = ao + aix + ax? + ... + aux’ be the minimal polynomial for T .
Assume that o f= 0 and p(T) = 0. To prove: T is invertible. Since p(x) is a minimal
polynomial for T.

aF (a0 +@T+,.+a T a=T

(- o= aT+ .—a T
1 2 k

31 T( (ra-a -..-«a Tk—l))
1 2 k
aol
1=T(- ~ (a+a +..+a 7k

1 2 k
(o 1) K
@O A8}
Let S -—1(a1+a2+ +o TFY). CIearIy,Sf= Ogga em rly ST =1. Thus

ST =TS = 1°°T is invertible. Conversgl |smvert|ble To prove: ao
f=0. Suppose not, a = 0. From(1),

m@&* = (a +
previeoage oot
Since T is invertible, T 7! exist. Multiplying the above relation t™%,

S(@T+aT>%+..+aT)T)T=0T"=0
Saf+aT}+..+aT =0, (2)

Let g(x) = ax + ... + apx*X. By(2), g(T) = 0. (i.e.) T satisfy the polynomial g(x) of
degree k — 1, which is a contradiction to the degree of minimal polynomial for T,
which is k =« shows that ap f=0.

Corollary 4.66 If V is finite dimensional over F and if T € A(V ) is in- vertible then T
"1 js a polynomial expression in T over F.

Proof: Let p(x) = ap + aax + aax? + + aux* with ax f= 0 be the minimal
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polynomial of T.

p(T)=0=> a0+ ouT+ T2 +... + T =0
= o= —(o1T+ T 2 + ... + T)
ao = (—a1)T+ (o) T2+ ... + (- T
1= 87+ B4+ (-

Oollo o 0o a 0o
1=((——1) (= =2) T+ + (- ) TNT
(07s) ay (0 7s)
1-T1=((- —)+( oz/ozZ)T+0...+(——)7"<‘1)T-T‘1

T1=8 +é}T+... +8 T%-1 o0

1 2 k
where 81 = (-2), ..., B¢ = (-2%). .. T is a polynomial expression in T
oo Qo

over F.

Corollary 4.67 If V is a finite dimensional vector space over a field F and if T € A(V
) is singular then there exists S f= 0 in A(V) such thatST = TS =0.

Proof: Let p(x) = oo + a1x + axx* + ... + aux® be a minimal polynomial of Tover F.
(i.e)) p(T)=0= ao+ aax + ax? +... + axxk = 0. Since Tis smgular (i.e. ) r&
invertible by Theorem 4.65, ap = 0 SooaT +opT2+.. + akT = O

LA aTY)T=0 (1)

LetS = a1+02T +... +axT* *thenS ﬂ&%
is of lower degree than p(x)) From( ly TS
7S =0, where Sf-

Corollary \e f/n/te d/me (@ 63?{1 ifTE A(V) is right invertible
@il%g;’léé\(v) is r@ @'g

=1(1)
To prove: Tis invertible. Suppose T is not invertible. (i.e.) T is sin- gular, then by
Corollary 4.67, there exists S f= 0in A(V) suchthatST =TS =0 (2)

From (1), TU=0

le. Then there exists U € A(V ) such that TU

=>S5(TU)=S5-1
=>(ST)U=S
=0-U=S by(2)
=5=0

>&S5f=0

This contradiction shows that T is invertible.

B\
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Theorem 4.69 If V is finite dimensional over F, T € A(V) is singular iff

vf=0in Vsuch that vT = 0.

Proof: Assume that T is singular. By Corollary 4.67 there exists Sf=0 €

A(V) such that ST =TS =0....oeee...... (1)

Since Sf=0in A(V), there exists w € V such that wS f=0. Let v=&henv{f=0inV,
vl = (wS)T =w(ST)=w0=0by(1) = vT =0, vf=0.-There exists vf= 0 in V such
that vT = 0. Conversely, suppose that thereexists v f= 0 in V such that vT =0. To
prove: T is singular. Suppose not, T is invertible. Then there exists U € A(V ) such
that UT=TU =1. Now, TU =1 = v(TU )=v-1(2)
v(iTU)=(vT)U=0-U=0-(3)

From (2) and (3),v=0=&tovf=0. ~ Tissingular.

Definition 4.70 Let T € A(V ), then (range of the linear transformation
T)Range of T={vT/vEV}=VT

Remark 4.71 (1) Range of T is a subspace of V
Proof: Letu, vE VT, a, BE€ F. Now (au + 8v)T = (au)T + (Bv)T = a(uT)+8(vT)
EVT = au+Bv EVT. -~ VT isasubspaceofV. .. Range of T is a subspace of

V.
(2) If VT =V then Tis onto. O \)\4

.
Theorem 4.72 If V is finite dimensional over F, th ) isc;’gular iff T maps
VontoV.
Proof: Suppose T is regular To p . Letv consider vT L. Now,

(T )T =v(tT)=v- V (| ry element v € V has
pre-image vT ! r T is ont @ﬁ ppose that T is onto. To

we must show that T is not onto.

V = V)S > ap= 0 = viis linearly independent. Since {vi1} is
linearly mdepe den e finite dimensional vector space. Since V is finite
dimensional, we can find vectors vy, v, ..., v, such that {vy, v,, v3,, va}
form a basis of V where dim(V)=n. ~ V Tis generated by wi =wiT, wy =
VaT, ..., Wp =V,T . Since wy =viT =0, V Tis spanned by v,T, vsT, , vo,T . (i.e.) VTis
spanned by wy, ws, ..., wp, «~ dim(VT) £ (n-1) < n =dim(V)=>dim(VT)<
dim(V)=VTc V= VTf=V= Tis notonto.

prove Wula uppose n sin
a) | gular, by Tq ere exists v f= 0 in V such that viT =0

Note 4.73 The above theorem can be replaced as T is reqular & dim(V T) =
dim(V) (ie.)VT=V.

Remark 4.74 The above theorem suggest that we could use dim(V T ) not only as
a test for regularity but even as a measure of degree of singularity for a given T €
A(V).
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Consequently, p(x) is the minimal polynomial of STS™! also let g(x) be the minimal
polynomial of STS™! (i.e.)Sg(T)S* = 0 = Sg(T)S* =0=¢g(T)=0.(i.e) T
satisfies the polynomial of g(x). Let h(x) be the polynomial of degree less than the
degree of g(x) and h(x) = 0. Again h(STS™!) = Sh(T)S* =0. (i.e.) STS™? satisfies
the polynomial h(x) and deg(h(x)) < deg(g(x)), which is contradiction.
Consequently, g(x) is a minimal polynomial of T also. Hence the theorem.

Definition 4.85 Let A be a characteristic root of T € A(V') the element v f=0in
V is called characteristic vector of T belongingtoA ifvT =Av. (Theorem 4.81
guaranteestheexistence ofsuchacharacteristicvectorsin V corresponding to A

Theorem 4.86 If Ay, Ay, ..., Ak are distinct characteristic roots of T € A(V ) and vy,
Va, ..., Vk are characteristics vectors of T belonging A4, A,, ..., Ax re- spectively then
Vi, V, ..., Vk are linearly independent over F.

Proof: Case(i): If k =1 then there is only one characteristic vector v; f= & V which
is linearly independent.

Case(ii): If kK > 1, To prove: vy, vy, ..., vk are linearly independent. Suppose the
characteristic vector v, vy, ..., vk are linearly dependent over F. Then there exists
scalars ay, o, ..., ok not all zero in F such that ayv; + aav, +

.. + axvi = 0. Without loss of generality, let us assume that the shortest relation
with non-zero coefficients (by suitably renumbering)

Biv1 + Bovy + ... +6jVj=0 K
where 8:=6,=... =6, f=0 u
Since A/s are characteristic roots we have CO .

viT = /\iVi, Vi \ *

By equation(1), ‘es %
Om (61V1_€ 9 )T =0- T B.viT +
\,\e\N “( @6+6 VaT)+... +6,(v;T) =0
P ( e P ag o B1A1v1 + 32A2V2 +...+B8Av; =0 (B1A1)v1+

)Vt +(BA)V =0, (2)
A1 % (1) = A1B1v1 #4282V +.......... +A16v;=0
(2)-(3)= (A2-A1)B2va+(A3—A1)B3va+... +(Aj —A1)BjV; =0 e (4)
Now, (A;-A1)8;f=0,i=2,3,...,j (A —A:1f=0,i>1and 8;f= 0). (i.e.)
VaV2 +Y3Va+......... +yvi=0.nee. (5)
wherey, =4, -A1 f=0, 3 =A5- A4 0,...vi =N — A1) 0=

Va, Vs, ..., v; are linearly dependent. By relation (5) we have produced a shorter
relation than that of equation (1) between vs, v, ..., vk &<«. This contradiction
provesthatvs, vy, ..., vk arelinearlyindependent. Forexample, t € V3(F ) number of
characteristics root of T< 3.
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triangular if

V1T = 011V1
VaT = aa1vi + 022V
vaT = a31v1 + 032V + Al33V3

Vil = anVvi + apVa + diiv;

VnT = O0n1V1 + Qn2V2 + QnnVn.
(i.e.) if viT is a linear combination only if vi and its predecessor in the basis.

Theorem 4.94 IfT € A(V) has all its characteristic rootin F, Then there is (x\( of
V in which the matrix of T is triangular.

Proof: We prove this theorem by induction on the d| er “FLf dime
(V) =1. Then every matrix representation a far. (i.e.) Amatrix of
order 1x1 which s trivially a trlan I rgﬁ‘ ose the theorem is true for all
vector spaces overF ofd|m Vbe a paces of dimension n

over F. Since the ﬂ n f mation Ton %‘é aracteristic root in F .
Let A& EF r Xists a non-zero vector v; €

stic roo he
Alvl Let W= {a F} en Wis a subspace of V of dimension

eneT
P( Pa WT ={(avi)T|a € F,vi € V}

={a(wviT)|a EF,viE V}
={aw1|W1€V,aEF}

= WT c W. . Wis asubspace of V of dimension 1 and invariant under T.
Let V = V/W then dim(V) = dim(V/W) = dim(V ) - dim(W) = (n - 1).

By Lemma 4.92, T induces the linear transformation T on V. Also minimal
polynomial of Tover F divides minimal polynomial of T over F . .= All the roots of
minimal polynomial of Theing the roots of minimal polynomialof
T must be in F. Thus V and T satisfies the hypotheses of the theorem.
Since dim(V) = n-1, then by induction hypotheses there is a basis consists

ofthevector v, W, ..., v, over V over F inwhich the matrix of f’istriangular
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Wl =anw
BT =anw+as:k

uT = anpw+opn+oui

T =0mh+anB+t... +0nh

Let vy, v3, ..., v, be the elements of V mappinginto v, i, ..., i, of v respec- tively.
(i.e.) W=vi+W,; s=wv3+W; ...; i, =vo+W. Thenvy, vy, ..., v, form a basis of V.

Since BT = otn(va+ W) = ctppva+ W

(va+ W)+ T= aovs + WvoT +
W=opnv, + W
> v T-ax»nv, EW
= voT — azv2 is a multiples of vi, say a21v1

= vT —anvs = anva CO .

voT = avi + oV Similarly 56.\6 .

vaT = 031V1 + 032V7 + 033V3

frof™
P(e\,\ \N Q@]m(/-lz . n)

(i.e.) the basis v, v, ..., v, of V over F provides us with a basis where every v;T is a
linear combination of v; and its predecessors hence the matrix of T in the basis
{vy, vy, ..., vn} istriangular.

Theorem 4.95 If V is a dimensional over F and T € A(V ) has matrix m1(T ) in the
basis vi, Va, ..., Vo and my(T ) = Cm4(T )C . In factif S is the linear transformation
of Vdefined by viS=wi;fori=1, 2, ..., nthen C can be chosen to be m(S).

Remark 4.96 The above theorem can be restated as if there is a matrix A € F, has
all its characters rootin F then there is matrix C € F, such that CAC! is a triangular
matrix.

Proof: Let A € F,, has all its characteristic roots in F . A defines a linear

uk
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2. (A+B)*=A*+B*

3. (AB)* = B*A* forall A, BE F,

Definition 4.117 SupposeF bea field of complex numbers and that adjoint

* on F, is the hermitian adjoint. The matrix A is called hermitian if A* =
A.

Definition 4.118 A is called skew hermitian if A* = -A

Remark 4.119 .

skew hermitian matrices

A= l(ZA +A%) +1(A —2A*). \ CO ‘\)
2. IfAf=0 € F, then trace o esa

IfAf n fﬂ)@ g

IfAl, Ay. “Q nd IfAlﬁ A@ I)AQ =0then

P ( e\’ \@Az = P_é-g

4. If A is a scalar matrix then A* = A,

1. Anysquare matrix A can be uniquely written as a sum of ahermitian ow

Example 4.120
o 3i 0 -3 A= =1 =2

Result4.121 The characteristics roots of a hermitian matrix are all real (i.e.) ifa
complexnumberA is a characteristic roots of a hermitian matrix then A must be
real.

Proof: Let A be a hermitian matrix then A = A* (i.e) A = A and A
be a characteristic root of T € A(V). Let X be a characteristicsvector
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.'.k1=k2=...=km=0
ki=0= fuwi+fuws+... + finw, =0
k2:0=>ﬁ1W1+ﬁ2W2+... +ﬁan =0

km:0:>fm1W1+fm2W2+... +fman=O .................. (5)

Since {w1, w,, ..., wy} forms the basis of K over F they are linearly indepen- dent
over F.

from (5) we have,

_fu =_f12=... =_f1n =0
fz1=ﬁz=... =ﬁn =0

fm1=fm2— —fmn—o

(ie)fiVi=1,2,..,mj=12,. . S= {V’Wl&éﬁaxa 1, 2

n}is linearly independent. (6)

From (2) and (3), the set S which cont ts for 6@5 of
LoverF. ~[L:F]= d/mp (L)‘g@ [K F1.(7 ,‘ rg&

Since [L : K] and.[K [L:F] %% L7s a finite extension
of F.

9;-@10 IfLis aflrpeagn of Fand K is a subfield of L

which contains F, then [K: F1/[L : F].

Proof: Given L, K, F are fields, suchthatL © K © F and[L : F] is finite. Clearlyany
elementinL,linearlyindependentoverKk, linearlyindependent over F. From the
assumption [L : F] is finite we come to conclusion that [K : F ] is finite. By
previous theorem, [L: F]=[L: K][K: F]. Hence [K : F]/[L : F].

Definition 5.11 An element a € K is said to be algebraic over F if there exists
elements ao, 01, Ay, ..., A € F, not all zero such that aea + a10 + n n-1

.. + ap =0.

Remark 5.12 if p(x) = aox" + oax™ 1 + ... + ap, G E F. « aod” + 010" +... +ap, =0
= p(a)=0. (i.e.) a € K is algebraic over F if there is a non-zero polynomial p(x)
€ F[x] which satisfies a. (i.e.) p(a)=0.

For example, p(x) = x>+ 3x* + 3x + 1 = p(-1) = 0 = -1 is algebraic over

Qand 1 is not algebraic over Q.

\)\4
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Let a, 8 € F such that ay = 8y,

V+a=V+8
(a-6)€V=p(x)
(o — B) = f(x)p(x) for some f(x) € F [x]
= f(x)=0
= (ax-86)=
S>a=8y
is1-1.

(ii) ¢ ishomomorphism:

(a+8)Y=V+(a+86)
=(V+a)+(V+86)
=ay +6yY
~ ¢ is a homomorphism.
Thus ¢ is an isomorphism from F into E. Let F be the image of F into E under ¢.

Let F={a+V |a € F}. Thus ¢ is an isomorphism of F onto F and F is a subfield
of E isomorphic to F by the mapping ¢ : F[x] > E, by fix)¢ =f(x)+V andthe
restrictionofy toF inducesanisomorphismof F onto F. If we identify F and F
under this isomorphism we can consider E to be an extension of F.
Claim: E is a finite extension of F of degree n equal to degree of p rs
we shall prove that the n elements {1+V, x+V, (x+V )? —x2+V x

S

+ V)"t =x"1 + V' } form a basis of E over F . [E : b‘* all ShOW that
er

p(x) has a root in E. Let p(x) = B0 + Bix +_Box ., Bk€E
F . First Let us make p(x) be a.pol I I venE with hel of |cation we
have made between F i
and F. For con %N t|on Let us o%jth ment xdl x+V
g\! g k+tV )x+...+(Bk+V )x¥. We shall show
E satisfies p(ﬁ

p(x+V)=(Bo+V)+(B1+V)(x+V)+... +(Bk +V)(x + V)*
=(Bo+V)+(B1+V)(x+V)+(B2+ V) P+ V) +...
+(Bk+ V)(xk+ V)
=(Bo+ Bix+Bx2 + ... + Bux) + Vv
=p(x)+V
=v(vplx)eV)
= zero element of E.

Thus (x +V ) satisfies p(x). ~ An element x+V in the extension E satisfies the
polynomial p(x) € F [x]. The field E has been shown to satisfy all the

\)\4
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F (X))t =glx)T*

S (oo™ + o™+ L+ o) T = (BoX™ + BiXTE 4 L+ BT

= aot” + o X" L+ 0ty = Bt + 61X +8,,
:>n=manda,-'=6,-',i=0,1, .......... n
=n=mand(a)t=(6)1,i=0,1,2 ........... n
=>n=manda;=6,i=0,1,2....n(~ tis 1-1)
Fx)=g(x)

T+ is onto: Let yot” +y X" +... +y, be any element of F'[t],y; €
F' since T is onto, there exists Vo, V1, ..., ¥n € F such that (yo)T = yg (Yi))T =
Vi eoor (VR)T = Vi NOW pox", yix™, .., ¥n € FIx] and (yox”, yix™, ..., Yn)T
* = (Yot +yiXTH . +y,). T is onto.
T *is a homomorphism: To Prove: (f(x) + g(x))t * = f(x)T * + g(x)T *

[f (x)+g(x)]T
= [aoX” + X"+ ... + oy + BoxX™ + BiX" L+ ... + Bl
= ((aoX" + o X" +... + ) + (Box™ +611x’"‘1+... +6,,))
= (ooX™ + X"+ +an)TF + (Box™ + 81X+ + B)T \4

=flx)t-+gx)t~ O
Hence t* is an isomorphism of F [x] onto F [t e C
o1ese

Remark 5.44 .

1. Further i m simply ta s Mre a € F then
RO ) o

P ( e\, m we conclude that factor/satlon of f(x) in F [x]
result risation of f(x)t* = f(t) in F'[t] and vice versa. In
particularf(x)isirreducibleinF [x]ifff (t)isirreducibleinF [t].

Lemma5.45 Lett beanisomorphism of afield F onto afield F’ defined by (a)T =
a VYo € F foran arbitrary polynomial f(x) = (aox" +a1x" 1+

...+0ty) € F[x]. Letus define f(t) = oyt +ay X" +...+a), € F'[t]. If f(x)
is irreducible in F[x], show that there is an isomorphism t* of F[x1/f(x)
onto F [t]/f [t] with the property that at ** = o/ (x + f(x))T ** = t + £ (t).
Proof: Let T *: F [x] > F [t] defined byf X)T * = f(t). Then by Lemma
5.43 t* isanisomorphism of F[x] onto F[t]. Let f(x) beirreduciblein F[x] then f
(t) will be irreducible in F[t]. V = (f(x)) ideal generated by f(x) in F[x] and V'
= (f(t)) ideal in F[t]. Now, f(x) and f(t) are irreducible both V and v are
maximal ideal. F [x]/V and F [t]/V are fields. Define t** : F[x]/V = F[t]/V’
by (g(x)+ V)t =g(x)T* +V =g/(t)+ V.
7 ** is well defined: For this we have to show that if V + g(x) = V + h(x)



