Hence, the general solution is z = C.F.

$$= \phi_1(y+x) + \phi_2(y+3x)$$

The median test to median to the test of the

Example 1.5.2 : Solve $[D^2 - 2DD' + D'^2]z = 0$.

Solution: $[D^2 - 2DD' + D'^2]z = 0$.

The auxiliary equation is $m^2 - 2m + 1 = 0$

[Replace D by m and D' by 1]

i.e.,
$$(m-1)^2 = 0$$

 $m = 1, 1$

Here, the roots are equal

$$\therefore$$
 C.F. = $\phi_1(y + x) + x \phi_2(y + x)$.

Since R.H.S. is zero, there is no particular integral

Hence, the general solution is z = C.F

$$z = \phi_1(y+x) + x \phi_2(y \in \mathbf{Q})$$

- For it multipled year har of .

 $z = \phi_1(y+x) + x \phi_2(y+0).$ Example 1.5.3 : Solve $[D^3 + DD'^2 - D^2O^2 - D^3]z = 0$ Solution : Given $[D^3 + DD'^2 - D^2O^2 - D^3]z = 0$ Solution: Given $[D_z^3 + D_z] = 0$

The auxiliary equation is $R_3 - m^2 + m - 1 = 0$

[Replace D by m and D' by 1]

$$m^{2}(m-1) + (m-1) = 0$$

 $(m-1)(m^{2}+1) = 0$
 $m = 1, m^{2} + 1 = 0$

i.e., m = 1, $m = \pm i$

i.e.,
$$m = 1$$
, $m = i$, $m = -i$

Here, the roots are distinct

: C.F =
$$\phi_1(y + x) + \phi_2(y + ix) + \phi_3(y - ix)$$

Since R.H.S. is zero, there is no particular integral