Findu-ARABIC MUMERALS

Exponents

		Expression	read	evaluation	
	exponent or power	<i>8</i> ,	8 to the first power	8'= 8	
bn	$= \mathbf{b} \cdot \mathbf{b} \cdot \mathbf{b}$	5 [*]	5 savared	5 = 5·5 = 25	
7	b appears as a factor	د <u>م</u>	6 cuped	(³ - 6, 6, 6, 7)	
base	n times	10"	10 to the fourth comer		
		25	14050		

In Expanded Form

- The place value of the first dig t 😁 the ight is 1
- The place value of it a coold digit from the r flat is 0. The place value of the third digit from the right is 100 or 10^2.

63=	(6×10)	+ (6x10')+	+(3XN
	^	$\boldsymbol{\gamma}$	~
	10,	٥٧	1

Begin by showing all powers of 10, starting with the highest exponent given. Any power of 10 that is left out is expressed as 0 times that power of 10.

 $\begin{array}{l} 600,080 = (6 \times 10^{5}) + (0 \times 10^{6}) + (0 \times 10^{3}) + (0 \times 10^{5}) + (0 \times 10^{7}) + (0 \times$

The Babylonian Numeration System

The Babylonians left a space to distinguish that various place values in a numeral from one another.

		64 = (10+10)
$= (1 \times 60^{2}) + (10)^{2}$	× 60') + (1 + 1) × 1	N=+1
= (1 × 3600) + (1		VV=(1+1)
= 3600+ 600+ 2	= 4202	244= (10+10+1)