
FREE-FALLING BODY

All bodies in free-fall close to the Earth's surface accelerate vertically downwards with the same acceleration: namely, $g = 9.81 \text{ ms}^2$.

$$v = gt$$

 $h = \frac{1}{2}gt^2$

Note: From constant acceleration, initial velocity = 0, final velocity = V, s = h and a = g.

vdv = ads

Where:

s = distance v = velocity $v_i = initial velocity$ $v_f = final velocity$ a = acceleration g = acceleration due to gravity t = time

Note:

- a is positive (+) if v is increasing (accelerate).
- a is negative (-) if v is decreasing (decelerate).
- g is positive (+) if the particle is moving downward.
- g is negative (-)if the particle is moving upward.

Problem 15.

A ball is dropped from a building 100 m high. If the mass of the ball is 10 gm after what time will the ball strike the earth?

	●↓				
	100m				
	L				k
				10	co.ur
Solution:				sale	
Solution: NOTE: since the ball is dropped the initial eldcity is zero. $h = \frac{1}{2}gt^{2}$ $100 m = \frac{1}{2}(-9.81\frac{m}{s^{2}})t^{2}$					
$h = \frac{1}{2}gt^{2}$					
$100 m = \frac{1}{2} \left(\cdot \right)$	$-9.81\frac{m}{s^2}t^2$				
t = 4.52 sec	answer.				