Fig. B

X f(x)
0,01 100
0,001 1000
0,0001 | 10000
-0,01 -100
. -0,001 | -1000
) -0,0001 | -10000

As x approaches zero from the right, 1 becomes positively infinite. As x apprt\azes
X
zero from the left, — becomes negatively infinite. Symbohcigm@g
X
lim £ = oo NI@X.Q
Now let us again ex e ﬁ&f@tlon f(X)X‘fi >@& becomes infinite in both a
ter@I 208

X f(x) X f(X)
1,000 .001 -1,000 001
10,000 0001 -10,000 -.0001
100,000 | .00001 -100,000 | -.00001
1,000,000 | .000001 -1,000,000 | -.000001

From the table above we can see that as x increases without bound through positive
values, the corresponding values of f(x) approaches zero.
Like-wise, as x decreases without bound through negative values, the corresponding
values of f(x) also approach zero. Symbolically we have
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We can now turn to the evaluation of the limit of a quotient of two polynomials where the
variable becomes infinite. For example consider
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. X*+3x+5

lim ———

xoo X —X+1
It is clear that as x —o0, both numerator and denominator become infinite. However, the
form of the quotient can be changed so that we can draw a conclusion as to whether or
not a limit exists. Since x— o, we are concerned only with those values of x which are
very large. Thus, we can assume x # 0.
A frequently used “gimmick” is to divide both the numerator and denominator by
the power of x which is the largest in either the numerator or denominator. In our
example itis x°. Thus
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As X— 0, % approaches 0. In fact, llg; xl =0 forp>0. \e ‘CO .u\k
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