Fig. B

Х	f(x)
0,01	100
0,001	1000
0,0001	10000
-0,01	-100
-0,001	-1000
-0,0001	-10000

As x approaches zero from the right, $\frac{1}{x}$ becomes positively infinite. As x approaches zero from the left, $\frac{1}{x}$ becomes negatively infinite. Symbolically we via $\lim_{x\to 0^+} \frac{1}{x} = \infty$ and $\lim_{x\to 0^-} \frac{1}{x} = \infty$ Now let us again examine the function $f(x) = \frac{1}{2}$, $x \neq 0$, as x becomes infinite in both a positive sense

x	f(x)]	X	f(x)
1.000	.001		-1,000	001
10,000	0001		-10,000	0001
100,000	00001		-100,000	00001
1 000 000	000001	-	-1,000,000	000001
1,000,000	.00001		-1,000,000	(

From the table above we can see that as x increases without bound through positive values, the corresponding values of f(x) approaches zero.

Like-wise, as x decreases without bound through negative values, the corresponding values of f(x) also approach zero. Symbolically we have

$\lim \frac{1}{2} = 0$	and	$\lim \frac{1}{2} = 0$
$x \rightarrow \infty X$		$x \rightarrow -\infty X$

We can now turn to the evaluation of the limit of a quotient of two polynomials where the variable becomes infinite. For example consider

$$\lim_{x \to \infty} \frac{x^2 + 3x + 5}{x^2 - x + 1}$$

It is clear that as $x \to \infty$, both numerator and denominator become infinite. However, the form of the quotient can be changed so that we can draw a conclusion as to whether or not a limit exists. Since $x \to \infty$, we are concerned only with those values of x which are very large. Thus, we can assume $x \neq 0$.

A frequently used "gimmick" is to divide both the numerator and denominator by the power of x which is the largest in either the numerator or denominator. In our example it is x^2 . Thus

$$\lim_{x \to \infty} \frac{x^2 + 3x + 5}{x^2 - x + 1} = \lim_{x \to \infty} \frac{x^2 (1 + \frac{3}{x} + \frac{5}{x^2})}{x^2 (1 - \frac{1}{x} + \frac{1}{x^2})}$$

$$= \frac{\lim_{x \to \infty} 1 + 3\lim_{x \to \infty} \frac{1}{x} + 5\lim_{x \to \infty} \frac{1}{x^2}}{\lim_{x \to \infty} 1 - \lim_{x \to \infty} \frac{1}{x} + 5\lim_{x \to \infty} \frac{1}{x^2}}$$
As $x \to \infty$, $\frac{1}{x}$ approaches 0. In fact, $\lim_{x \to \infty} \frac{1}{x^p} = 0$ for $p > 0$.
Thus, $\lim_{x \to \infty} \frac{x^2 + 3x + 5}{x^2 - x + 1} = \frac{1 + 3(0) + 5(0)}{1 - 0 + 0} = 0$ for $p > 0$.
Thus, $\lim_{x \to \infty} \frac{x^2 + 3x + 5}{2x^3 + 3x - 1} = \frac{1 + 3(0) + 5(0)}{1 - 0 + 0} = 0$ for $p > 0$.
Examples
1. $\lim_{x \to \infty} \frac{8x^2 + 2x + 3}{2x^3 + 3x - 1} = \lim_{x \to \infty} \frac{x^3 (\frac{8}{x} + \frac{2}{x^2} + \frac{3}{x^3})}{x^3 (2 + \frac{3}{x^2} - \frac{1}{x^3})}$

$$= \frac{8\lim_{x \to \infty} \frac{1}{x} + 2\lim_{x \to \infty} \frac{1}{x^2} - \lim_{x \to \infty} \frac{1}{x^3}}{\lim_{x \to \infty} \frac{1}{x^2} - \lim_{x \to \infty} \frac{1}{x^3}}$$

$$= \frac{8(0) + 2(0) + 3(0)}{2 + 3(0) - (0)}$$