<¢X0, He(z)_1¢y0> can approach the Green’s function:
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Here, it is stressed that nothing authorizes to take the
limit a | O since the function ¢, is not square integrable
at this limit. Thus the coefficient (¢x,, He(2) "y, ) just
allows to address an approximation of the Green’s func-
tion Ge(xo,Yq; 2)-

According to these arguments above, it is assumed that
the electromagnetic Green’s function can be defined, and
that its properties can be established from the coefficients
(¢, He(2)711p). First, it is clear that all the analytic prop-
erties of He(2)™! and H(z, &)1 are directly transposable
to coefficients (¢, H.(2) ~1¢) and (¢, H(z, &) ~4). Indeed,
it is enough to expand the inverse in (¢, He(2)~1¢) in a
power series like (29) and then to check that the resulting
power series with the coefficients converges. Another im-
portant properties of the Green’s function is the behavior
for large frequency z. First, it is shown in the appendix
A that it decreases like 1/(22ouo) or, equivalently,

lim 2%eouo (¢, He(2)70) = (6, 9) . (40)
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It has to be noticed that this asymptotic behav1or is iﬁ
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is bounded when w — oo. This can be established writ-
ting the difference
z)—eolHe(2) 7!,

He(2) ™! —Ho(2) ™! = —Ho(2) ™
(42)
and then using the bound (32) and the estimate (18).
Hence it is found that
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These properties and asymptotic behaviors will be used
in the next section to derive a version of Kramers-Kronig
relations for the electromagnetic Green’s function.

IV. KRAMERS-KRONIG RELATIONS FOR THE
ELECTROMAGNETIC GREEN’S FUNCTION

The Kramers-Kronig relations can be applied to all
function derived from a causal signal. It is generally

used to analyze the dielectric permittivity, the perme-
ability or the optical index3. A new version of Kramers-
Kronig relations, given by equation (10), has been pro-
posed recently”'9. This version shows that the general
expression of the permittivity is a continuous superpo-
sition of elementary resonances given by the elastically
bound electron model. Thus it extends the classical
Drude-Lorentz expression' of the permittivity, and also
its quantum mechanical justification based on the electric
dipole approximation!!. In particular, the continuous su-
perposition of resonances in (10) describes a regime with
absorption, while the quantum mechanics model is re-
duced to a discrete superposition of resonances and thus
to the description of systems without absorption.

In this section, it is proposed to express the new ver-
sion of Kramers-Kronig relations for the electromagnetic
Green’s function or, equivalently, for the inverse operator
He(2)~!. The objective is to transpose all the properties
of the permittivity, and to make it possible to use all the
knowledge on permittivity €(x, z) for the electromagnetic
Green’s function.

The inverse operators H(z)™! and Ho(z)™! are ex-
pected to have properties similar to those of permittiv-
ities £(x, z) and £9. Thus the foll\x operator is con-

sidered:
a\:@ ...gg)—l ~Hol2) " (44)

&els noticed that, as Well as He(2)™t and Ho(2) 71,
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which is related to Tz) =¢g(—
X(t) be defined by

=R(-2)7', (45)

Z). Next, let the operator

X(t) = /1* dz exp[—izt]R(z), (46)

n

where I, is the horizontal line parallel to the real axis
at a distance 7, of complex numbers z = w + in with
n > 0. It is stressed that this integral is well defined
since, thanks to (43), R(z) is bounded and decreases like
1/w?.  Also, this decrease in 1/w? implies that X(t) is
the Fourier transform of an integrable function, and thus
X(t) is continuous of t. The integral expression of X(¢) is
independent of i thanks to the analytic nature of the op-
erator under the integral. The operator X(t) is selfadjoint
since, for z = w + in,

X)) = /Rdw explizt] R(=Z) = /Rdw exp[—izt] R(2),

(47)
where (45) has been used and the change w — —w has
been performed to obtain the last expression. In addi-
tion, it can be checked that X(¢) vanishes for negative
times. Indeed, in that case, the integral (46) can be com-
puted by closing the line I';, by a semi circle with infinite
radius in the upper half plane. Since all the functions are



