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〈
φx0 ,He(z)

−1φy
0

〉
can approach the Green’s function:

〈
φx0 ,He(z)

−1φy
0

〉

=

∫

R3

dx

∫

R3

dy φa(x− x0)Ge(x, y; z)φa(y − y0)

≈ Ge(x0, y0; z) .
(39)

Here, it is stressed that nothing authorizes to take the
limit a ↓ 0 since the function φa is not square integrable
at this limit. Thus the coefficient

〈
φx0 ,He(z)

−1φy
0

〉
just

allows to address an approximation of the Green’s func-
tion Ge(x0, y0; z).
According to these arguments above, it is assumed that

the electromagnetic Green’s function can be defined, and
that its properties can be established from the coefficients
〈φ,He(z)

−1ψ〉. First, it is clear that all the analytic prop-
erties of He(z)

−1 and H(z, ξ)−1 are directly transposable
to coefficients 〈φ,He(z)

−1ψ〉 and 〈φ,H(z, ξ)−1ψ〉. Indeed,
it is enough to expand the inverse in 〈φ,He(z)

−1ψ〉 in a
power series like (29) and then to check that the resulting
power series with the coefficients converges. Another im-
portant properties of the Green’s function is the behavior
for large frequency z. First, it is shown in the appendix
A that it decreases like 1/(z2ε0µ0) or, equivalently,

lim
|z|→∞

z2ε0µ0

〈
φ,He(z)

−1ψ
〉
=

〈
φ, ψ

〉
. (40)

It has to be noticed that this asymptotic behavior is for
the modulus |z| of the complex frequency which tends
to infinity. An important asymptotic regime is the limit
ω → ∞ in the complex frequency z, i.e. for fixed imagi-
nary part Im(z). In this case, one can show that

z2
[
He(z)

−1 − H0(z)
−1

]
(41)

is bounded when ω → ∞. This can be established writ-
ting the difference

He(z)
−1−H0(z)

−1 = −H0(z)
−1z2µ0[ε(x, z)−ε0]He(z)

−1 ,
(42)

and then using the bound (32) and the estimate (18).
Hence it is found that

z2
[
He(z)

−1 − H0(z)
−1

]

≈
ω→∞

zH0(z)
−1 [∂tχ](x, 0

+) zHe(z)
−1

≤ [∂tχ](x, 0
+)

[ε0µ0 Im(z)]2
.

(43)

These properties and asymptotic behaviors will be used
in the next section to derive a version of Kramers-Kronig
relations for the electromagnetic Green’s function.

IV. KRAMERS-KRONIG RELATIONS FOR THE

ELECTROMAGNETIC GREEN’S FUNCTION

The Kramers-Kronig relations can be applied to all
function derived from a causal signal. It is generally

used to analyze the dielectric permittivity, the perme-
ability or the optical index1,3. A new version of Kramers-
Kronig relations, given by equation (10), has been pro-
posed recently7,10. This version shows that the general
expression of the permittivity is a continuous superpo-
sition of elementary resonances given by the elastically
bound electron model. Thus it extends the classical
Drude-Lorentz expression1 of the permittivity, and also
its quantum mechanical justification based on the electric
dipole approximation11. In particular, the continuous su-
perposition of resonances in (10) describes a regime with
absorption, while the quantum mechanics model is re-
duced to a discrete superposition of resonances and thus
to the description of systems without absorption.
In this section, it is proposed to express the new ver-

sion of Kramers-Kronig relations for the electromagnetic
Green’s function or, equivalently, for the inverse operator
He(z)

−1. The objective is to transpose all the properties
of the permittivity, and to make it possible to use all the
knowledge on permittivity ε(x, z) for the electromagnetic
Green’s function.
The inverse operators He(z)

−1 and H0(z)
−1 are ex-

pected to have properties similar to those of permittiv-
ities ε(x, z) and ε0. Thus the following operator is con-
sidered:

R(z) = He(z)
−1 − H0(z)

−1 , (44)

First, it is noticed that, as well as He(z)
−1 and H0(z)

−1,
the adjoint operator of R(z)−1 is

[
R(z)−1

]†
= R(−z)−1 , (45)

which is related to ε(z) = ε(−z). Next, let the operator
X(t) be defined by

X(t) =

∫

Γη

dz exp[−izt]R(z) , (46)

where Γη is the horizontal line parallel to the real axis
at a distance η, of complex numbers z = ω + iη with
η > 0. It is stressed that this integral is well defined
since, thanks to (43), R(z) is bounded and decreases like
1/ω2. Also, this decrease in 1/ω2 implies that X(t) is
the Fourier transform of an integrable function, and thus
X(t) is continuous of t. The integral expression of X(t) is
independent of η thanks to the analytic nature of the op-
erator under the integral. The operator X(t) is selfadjoint
since, for z = ω + iη,

X(t)† =

∫

R

dω exp[izt]R(−z) =
∫

R

dω exp[−izt]R(z) ,
(47)

where (45) has been used and the change ω → −ω has
been performed to obtain the last expression. In addi-
tion, it can be checked that X(t) vanishes for negative
times. Indeed, in that case, the integral (46) can be com-
puted by closing the line Γη by a semi circle with infinite
radius in the upper half plane. Since all the functions are
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