
This theorem neither requires positivity nor Lorentz covariance. It expresses a property of the
domain of holomorphy of the Wightman functions, and of the boundary values from this domain. In
fact, it states that appropriate boundary values of the (m + n)−point holomorphic function Wm+n,
taken in the region where all the variables w1, . . . , wm, z1, . . . , zn belong toW(r)∩Xd, are holomorphic

with respect to the group variable λ (for λ ∈ C \R+) in the orbits (w, x) 7→ (w, [λ]x) of T
(c)
h(x0)

(with

w = (w1, . . . , wm), x = (x1, . . . , xn), λ = e
t
R ) and such that:

for λ > 0,

Wm+n(w, [λ+ i0]x) = Wm+n(w, [λ]x), Wm+n(w, [λ− i0]x) = Wm+n([λ]x, w) (47)

and for λ < 0, putting x← = (xn, . . . , x1),

Wm+n(w, [λ]x) = Wm+n(w, [λ]x←) = Wm+n([λ]x←, w) (48)

the latter equality being a direct consequence of locality (since x ∈Wn
(r) and λ < 0 imply [λ]x← ∈ Wn

(l)).
The theorem will be proved here under the simplifying assumption that the temperedness condition

(17) holds.

Proof
Four permuted branches of the functionWm+n are involved in the proof. The variablesw = (w1, . . . , wm)

will always be kept real in Wm
(r) ∩Xm

d , while the variables z = (z1, . . . , zn) are complex (in X
(c)n
d ) and

we denote y = Im z. The corresponding analyticity domains in the variables z (described below) are
obtained in the boundaries (i.e. in the “face” Imw = 0) of four permuted tuboids T π

m+n according to
the prescription of our weak spectral condition. In view of the distribution boundary value procedure,
restricted to the subset of variables w, these analyticity domains are obtained whenever one smears out
the permuted functions Wπ

m+n under consideration with a fixed function fm ∈ D(Wm
(r) ∩ Xm

d ). (this

function being understood as the function named fm in the statement of the theorem). These four
branches are:

i) Wm+n(w1, . . . , wm, z1, . . . , zn) = Wm+n(w, z), holomorphic in the tuboid:

Zn+ =
{
z ∈ X

(c)n
d ; y1 ∈ V+, yj − yj−1 ∈ V+, j = 2, . . . , n

}
;

ii) Wm+n(zn, . . . , z1, w1, . . . , wm) = Wm+n(z←, w), holomorphic in the opposite tuboid:

Zn− = {z ∈ X
(c)n
d ; y1 ∈ V−, yj − yj−1 ∈ V−, j = 2, . . . , n};

iii) Wm+n(z1, . . . , zn, w1, . . . , wm) = Wm+n(z, w), holomorphic in the tuboid:

Z ′n+ = {z ∈ X
(c)n
d ; yn ∈ V−, yj − yj−1 ∈ V+, j = 2, . . . , n};

iv) Wm+n(w1, . . . , wm, zn, . . . , z1) = Wm+n(w, z←), holomorphic in the opposite tuboid:

Z ′n− = {z ∈ X
(c)n
d ; yn ∈ V+, yj − yj−1 ∈ V−, j = 2 . . . , n}.

Correspondingly, with the fixed function fm ∈ D(Wm
(r)∩Xm

d ) we associate the following four functions

z 7→ F±(fm; z) and z 7→ F ′±(fm; z):

F+(fm; z) =

∫

Xm
d

Wm+n(w, z) fm(w) dmσ(w), F−(fm; z) =

∫

Xm
d

Wm+n(z←, w) fm(w) dmσ(w)

(49)

F ′+(fm; z) =

∫

Xm
d

Wm+n(z, w) fm(w) dmσ(w), F ′−(fm; z) =

∫

Xm
d

Wm+n(w, z←) fm(w) dmσ(w)

(50)
which are respectively holomorphic in Zn+, Zn−, Z ′n+ and Z ′n−. By letting the variables z tend
to the reals from the respective tuboids Zn+, Zn−, Z ′n+ and Z ′n−, and taking the corresponding
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Since the function F (fm; z) satisfies the analyticity and temperedness properties of the function
H(z) of Lemma 2 a), it follows that one can take the boundary value onto Xn

d ×C+ from Zn+ ×C+ of
the holomorphic function (z, λ) 7→ F (fm; [λ]z) and obtain for every gn ∈ D(Xn

d ) the following relations
(deduced from Eq. (55) after taking into account Eqs. (51) and (52)):

∫

Xn
d

F (fm; [λ]x)gn(x)d
nσ(x) = 〈Wm+n, fm ⊗ gnλ〉 for λ > 0, (57)

∫

Xn
d

F (fm; [λ]x)gn(x)d
nσ(x) = 〈Wm+n, g

←
n λ ⊗ fm〉 for λ < 0. (58)

Similarly, one can apply the results of Lemma 2 b) to the function H ′(z) = F ′(fm; z); one can
thus take the boundary value onto Xn

d ×C− from Z ′n+ × C− of the holomorphic function (z, λ) 7→
F ′(fm; [λ]z) and obtain for every gn ∈ D(Xn

d ) the following relations (deduced from Eq. (56) after
taking into account Eqs. (53) and (54)):

∫

Xn
d

F ′(fm; [λ]x)gn(x)d
nσ(x) = 〈Wm+n, gnλ ⊗ fm〉 for λ > 0, (59)

∫

Xn
d

F ′(fm; [λ]x)gn(x)d
nσ(x) = 〈Wm+n, fm ⊗ g←n λ〉 for λ < 0. (60)

The l.h.s. of Eqs. (57) (or (58)) and (59) (or (60)) are respectively the boundary values of the
holomorphic functions

G(fm,gn)(λ) =

∫

Xn
d

F (fm; [λ]x)gn(x)d
nσ(x) (61)

defined for λ ∈ C+ and

G′(fm,gn)
(λ) =

∫

Xn
d

F ′(fm; [λ]x)gn(x)d
nσ(x) (62)

defined for λ ∈ C−. For an arbitrary function gn ∈ D(Xn
d ), these two holomorphic functions are distinct

from each other. Now, if gn is taken in D(Un
h(x0)

), the r.h.s. of Eqs. (58) and (60) coincide in view
of local commutativity, and therefore these two holomorphic functions admit a common holomorphic
extension G(fm,gn)(λ) in C \R+ whose boundary values on R \ 0 satisfy the properties a) and b) of the
theorem. (in view of Eqs. (57)—(60)).

Proof of Lemma 2
We concentrate on part a) of the lemma, part b) being completely similar. At first, the fact that the
function (z, λ) 7→ H([λ]z) can be analytically continued in Zn+ ×C+ is a result of purely geometrical
nature (based on the tube theorem) which can be obtained as a direct application of lemma 3 (ii) of

Appendix A. In fact, for each point x ∈ J (r)
n , the set {z = [λ]x; λ ∈ C+} is contained in ∆ (namely

in Zn+, as it directly follows from Eq. (3) and from the definitions of J (r)
n and Zn+). One can even

check that each point x ∈ J (r)
n is on the edge of a small open tuboid τ(x) contained in Zn+ such that

{z = [λ]z′; z′ ∈ τ(x), λ ∈ C+} ⊂ Zn+ ∪ V ⊂ ∆. On the other hand, for each point z ∈ Zn+ there
exists a neighbourhood δ+(z) of the real positive axis and a neighbourhood δ−(z) of the real negative
axis in the complex λ-plane, such that the set {[λ]z; λ ∈ δ+(z)∪δ−(z)} is contained in ∆: for λ ∈ δ+(z)
and λ ∈ δ−(z) the corresponding subsets are respectively contained in Zn+ and in Zn−. Therefore, the
assumptions of lemma 3 (ii) of Appendix A are fulfilled (by choosing the set Q of the latter as a subset
of τ(x) and D′ = Zn+ after an appropriate adaptation of the variables). In order to see that the new
domain thus obtained (i.e. {z = [λ]z′; z′ ∈ Zn+, λ ∈ C+} yields an enlargement of ∆, it is sufficient
to notice that every real point x such that at least one component xj − xj−1 is time-like is transformed
by any complex transformation [λ] into a point outside Zn± and this is of course also true for all points
z ∈ Zn+ tending to such real (boundary) points (the neighbourhoods δ±(z) becoming arbitrarily thin
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By composing σn with zj = th (ζj/2), we obtain a self-conjugate holomorphic diffeomorphism τn of
the tube

{ζ = ξ + iη ∈ Cnd : |ηj | < π/2, 1 ≤ j ≤ nd} (105)

onto a complex neighborhood of an in X
(c)n
d such that τn(0) = an and the image of the tube

Θn = {ζ = ξ + iη ∈ Cnd : 0 < ηj < π/2, 1 ≤ j ≤ nd}. (106)

is contained in Zn. Let
Bnm(ζ, ζ′) = Anm(τn(ζ), τm(ζ′)). (107)

The functions Bnm are holomorphic in Θn ×Θ∗m. Since for ζ = ξ + iη ∈ C,

th (ζ/2) =
sh ξ + i sin η

2|ch (ζ/2)|2 , (108)

the Bnm satisfy

|Bnm(ζ, ζ′)| ≤ K ′
∑

j

(
e|ξj |

| sin ηj |

)r

+K ′
∑

j

(
e|ξ

′

j |

| sin η′j |

)r

,

∀ζ = ξ + iη ∈ Θn, ζ
′ = ξ′ + iη′ ∈ Θ∗m.

(109)

They have boundary values B
(v)
nm in the sense of generalized functions over test-functions of faster than

exponential decrease. These boundary values satisfy, for each finite sequence {fn}, f0 ∈ C, fn ∈ D(Rnd)
for n ≥ 1, ∑

n, m

∫
B(v)

nm(ξ, ξ′)fn(ξ) fm(ξ′) dξ dξ′ ≥ 0. (110)

Let now

ρn, ε(ξ) = C(ε) exp


−

nd∑

j=1

(ξ2j /ε)


 , (111)

where C(ε) is chosen so that
∫
ρn, ε(ξ) dξ = 1. For each µ ∈ Cnd, the function ξ 7→ ρn, ε(ξ + µ) is of

gaussian decrease, and depends holomorphically on µ. In particular if µn ∈ Θn, µ
′
m ∈ Θ∗m,

∫

Rnd×Rmd

B(v)
nm(t, t′) fn(ξ) ρn, ε(t− µn − ξ) fm(ξ′)ρm, ε(t′ − µ̄′m − ξ′) dt dt′ dξ dξ′

=

∫

Rnd×Rmd

Bnm(t+ µn, t
′ + µ′m) fn(ξ) ρn, ε(t− ξ) fm(ξ′)ρm, ε(t′ − ξ′) dt dt′ dξ dξ′,

(112)

since both sides define analytic functions in Θn ×Θ∗m whose boundary values for real µn, µ
′
m coincide.

The lhs satisfies the positivity conditions, by virtue of Eq. (110), if we chose µ′n = µ̄n for all n. It
follows, by letting ε tend to 0 in the rhs, that the functions Bnm have the property (G.0) of Glaser’s
theorem 1 and therefore all the properties (G.0)-(G.4) in the sequence of domains {Θn}. Coming back
to the original variables, Glaser’s theorem 1 now shows that the same properties, in particular (G.2),
extend to the entire tuboid {Zn}. We have thus proved the following

Proposition 5 For any integer M ≥ 1, there exist a sequence {Fν, 0 ∈ C}ν∈N and, for each integer
n ∈ [1, M ], a sequence {Fν, n}ν∈N of functions holomorphic in Zn, such that, for every n and m in
[1, M ], z ∈ Zn, w ∈ Z∗m,

Wm+n(w←, z) =
∑

ν∈N

Fν, m(w̄)Fν, n(z), (113)

where the convergence is uniform on every compact subset of Z∗m ×Zn.

23

Preview from Notesale.co.uk

Page 23 of 32



The domain U1 of Eq. (139) is not a tube. We can however inscribe in it increasing unions of topological
products of lunules which are isomorphic to tubes. In fact, for every A > 1

π , there exists an ε > 0 such
that U1 contains

VA = {(ω, ζ) ∈ C1+N : ω ∈ L(A, ε), ζj ∈ L(A, π − 1/A)}
∪ {(ω, ζ) ∈ C1+N : ω ∈ L(A, π − 1/A), ζj ∈ L(A, ε)}. (141)

Using the conformal map (128) in all variables, we can map VA into a tube whose holomorphy envelope
is its convex hull. Returning to the variables (ω, ζ), and taking the limit A → ∞ shows that the
functions Gs,a are holomorphic in the interior of the convex hull of S1, namely

⋃

0<θ<π

{(ω, ζ) ∈ C1+N : 0 < Imω < π − θ, 0 < Im ζj < θ, ∀j}. (142)

This set is the image of the domain ∆a introduced in Eq. (124) under the mapping w 7→ µ = w−w−1 7→
ω, z 7→ ζ defined in Eq. (135), and therefore the assertion of Lemma 4 follows.

Lemma 3 (i) in the special case D = P follows from the latter by letting a tend to 0.
2. We now prove Lemma 3 (ii) in the case when D′ = ρQ for some real ρ > 1. The proof of this is the
same as that of Lemma 4, except that the change of coordinates (138) is replaced by

zj = exp(iζj), (1 ≤ j ≤ N). (143)

This again allows the use of the tube theorem.
3. Lemma 3 (ii) follows from this by using chains of polydisks, and (i) follows in the same way from the
special case D = P and (ii).

B Appendix. A lemma of Hall and Wightman

In [23], Hall and Wightman prove the following lemma

Lemma 5 Let M ∈ L+(C) be such that T+ ∩M−1T+ 6= ∅. There exists a continuous path t 7→ M(t)
from the interval [0, 1] into L+(C) such that M(0) = 1, M(1) = M and that, for every z ∈ T+ ∩
M−1 T+ ⊂ Cd+1, M(t)z ∈ T+ holds for all t ∈ [0, 1].

This lemma is proved in [23] for the case d + 1 ≤ 4 (a very clear exposition also appears in [32]).
It is extended to all dimensions in [24]. We give another proof based on holomorphic continuation. As
noted in the above references, if M ∈ L+(C) is such that the statement in Lemma 5 holds, then it holds

for Λ1MΛ2 for any Λ1, Λ2 ∈ L↑+, as well as for M
−1. It is therefore sufficient to consider the case when

M is one of the normal forms classified by Jost in [24]. M can then be written in the form:

M =

(
M1(i) 0

0 M2(i)

)
(144)

where t 7→ M1(t) is a one-parameter subgroup of the p × p Lorentz group, real for real t, with p ≤ 3,
and t 7→ M2(t) is a one-parameter subgroup of the (d + 1− p)× (d + 1 − p) orthogonal group, real for
real t. In the generic case p ≤ 2, M1(t) = 1 if p = 1 and, if p = 2, M1(t) = [exp at] for some real a with
|a| ≤ π. We focus on this case first. Replacing M by M−1 if necessary, we may assume 0 < a ≤ π. For
any z ∈ T+ the set ∆(z, M) = {t ∈ C : M(t)z ∈ T+} is invariant under real translations, i.e. is a
union of open strips parallel to the real axis. Let

E(M) = {T+ ∩M−1T+} = {z ∈ Cd+1 : R ∪ (i+R) ⊂ ∆(z, M)}.

Denote z(s) = (z(0), z(1), sz(2), . . . , sz(d)). If z ∈ E(M), then z(s) ∈ E(M) for all s ∈ [0, 1]. The
set ∆(z(0), M) contains the segment i[0, 1], and hence i[0, 1] ⊂ ∆(z′, M) for all z′ in a sufficiently
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