This theorem neither requires positivity nor Lorentz covariance. It expresses a property of the domain of holomorphy of the Wightman functions, and of the boundary values from this domain. In fact, it states that appropriate boundary values of the (m + n)-point holomorphic function \mathfrak{W}_{m+n} , taken in the region where all the variables $w_1, \ldots, w_m, z_1, \ldots, z_n$ belong to $W_{(r)} \cap X_d$, are holomorphic with respect to the group variable λ (for $\lambda \in \mathbf{C} \setminus \mathbf{R}_+$) in the orbits $(w, x) \mapsto (w, [\lambda]x)$ of $T_{h(x_0)}^{(c)}$ (with $w = (w_1, \ldots, w_m), x = (x_1, \ldots, x_n), \lambda = e^{\frac{t}{R}}$) and such that:

for $\lambda > 0$,

$$\mathfrak{W}_{m+n}(w, \ [\lambda+i0]x) = W_{m+n}(w, \ [\lambda]x), \quad \mathfrak{W}_{m+n}(w, \ [\lambda-i0]x) = W_{m+n}([\lambda]x, \ w)$$
(47)

and for $\lambda < 0$, putting $x_{\leftarrow} = (x_n, \ldots, x_1)$,

$$\mathfrak{W}_{m+n}(w, \ [\lambda]x) = W_{m+n}(w, \ [\lambda]x_{\leftarrow}) = W_{m+n}([\lambda]x_{\leftarrow}, \ w)$$
(48)

the latter equality being a direct consequence of locality (since $x \in W_{(r)}^n$ and $\lambda < 0$ imply $[\lambda]x_{\leftarrow} \in W_{(l)}^n$).

The theorem will be proved here under the simplifying assumption that the temperedness condition (17) holds.

Proof

Four permuted branches of the function \mathfrak{W}_{m+n} are involved in the proof. The variables $v = (w_1, \ldots, w_m)$ will always be kept real in $W_{(r)}^m \cap X_d^m$, while the variables $z = (z_1, \ldots, z_n)$ are complex (in $X_d^{(c)n}$) and we denote $y = \operatorname{Im} z$. The corresponding analyticity domains \mathfrak{P}_n or variables z (described below) are obtained in the boundaries (i.e. in the "face" $\operatorname{Im} v \in \mathbb{O}$ of four permuted tuboids \mathcal{T}_{m+n}^{π} according to the prescription of our weak spectral condition. Inview of the distribution boundary value procedure, restricted to the subset of variable u_n , base analyticity domains are obtained whenever one smears out the permuted functions W_{n+1} under consideration with a fixed function $f_m \in \mathcal{D}(W_{(r)}^m \cap X_d^m)$. (this function being a metric of as the function normal f_m in the statement of the theorem). These four branches are

- i) $W_{m+n}(w_1, \dots, w_m, z_1, \dots, z_n) = W_{m+n}(w, z)$, holomorphic in the tuboid: $\mathcal{Z}_{n+} = \left\{ z \in X_d^{(c)n}; \ y_1 \in V_+, y_j - y_{j-1} \in V_+, \ j = 2, \dots, n \right\};$
- ii) $W_{m+n}(z_n, \ldots, z_1, w_1, \ldots, w_m) = W_{m+n}(z_{\leftarrow}, w)$, holomorphic in the opposite tuboid: $\mathcal{Z}_{n-} = \{z \in X_d^{(c)n}; y_1 \in V_-, y_j - y_{j-1} \in V_-, j = 2, \ldots, n\};$
- iii) $W_{m+n}(z_1, \ldots, z_n, w_1, \ldots, w_m) = W_{m+n}(z, w)$, holomorphic in the tuboid: $\mathcal{Z}'_{n+} = \{z \in X_d^{(c)n}; y_n \in V_-, y_j - y_{j-1} \in V_+, j = 2, \ldots, n\};$
- iv) $W_{m+n}(w_1,\ldots, w_m, z_n,\ldots, z_1) = W_{m+n}(w, z_{\leftarrow})$, holomorphic in the opposite tuboid: $\mathcal{Z}'_{n-} = \{z \in X_d^{(c)n}; y_n \in V_+, y_j - y_{j-1} \in V_-, j = 2 \ldots, n\}.$

Correspondingly, with the fixed function $f_m \in \mathcal{D}(W^m_{(r)} \cap X^m_d)$ we associate the following four functions $z \mapsto F_{\pm}(f_m; z)$ and $z \mapsto F'_{\pm}(f_m; z)$:

$$F_{+}(f_{m}; z) = \int_{X_{d}^{m}} W_{m+n}(w, z) f_{m}(w) d^{m}\sigma(w), \qquad F_{-}(f_{m}; z) = \int_{X_{d}^{m}} W_{m+n}(z_{\leftarrow}, w) f_{m}(w) d^{m}\sigma(w)$$
(49)

$$F'_{+}(f_{m}; z) = \int_{X_{d}^{m}} W_{m+n}(z, w) f_{m}(w) d^{m}\sigma(w), \qquad F'_{-}(f_{m}; z) = \int_{X_{d}^{m}} W_{m+n}(w, z_{\leftarrow}) f_{m}(w) d^{m}\sigma(w)$$
(50)

which are respectively holomorphic in \mathcal{Z}_{n+} , \mathcal{Z}_{n-} , \mathcal{Z}'_{n+} and \mathcal{Z}'_{n-} . By letting the variables z tend to the reals from the respective tuboids \mathcal{Z}_{n+} , \mathcal{Z}_{n-} , \mathcal{Z}'_{n+} and \mathcal{Z}'_{n-} , and taking the corresponding

Since the function $F(f_m; z)$ satisfies the analyticity and temperedness properties of the function H(z) of Lemma 2 a), it follows that one can take the boundary value onto $X_d^n \times \mathbf{C}_+$ from $\mathcal{Z}_{n+} \times \mathbf{C}_+$ of the holomorphic function $(z, \lambda) \mapsto F(f_m; [\lambda]z)$ and obtain for every $g_n \in \mathcal{D}(X_d^n)$ the following relations (deduced from Eq. (55) after taking into account Eqs. (51) and (52)):

$$\int_{X_d^n} F(f_m; [\lambda]x) g_n(x) d^n \sigma(x) = \langle \mathcal{W}_{m+n}, f_m \otimes g_{n\lambda} \rangle \quad \text{for } \lambda > 0,$$
(57)

$$\int_{X_d^n} F(f_m; [\lambda]x)g_n(x)d^n\sigma(x) = \langle \mathcal{W}_{m+n}, g_n \overset{\leftarrow}{}_{\lambda} \otimes f_m \rangle \quad \text{for } \lambda < 0.$$
(58)

Similarly, one can apply the results of Lemma 2 b) to the function $H'(z) = F'(f_m; z)$; one can thus take the boundary value onto $X_d^n \times \mathbb{C}_-$ from $\mathcal{Z}'_{n+} \times \mathbb{C}_-$ of the holomorphic function $(z, \lambda) \mapsto$ $F'(f_m; [\lambda]z)$ and obtain for every $g_n \in \mathcal{D}(X_d^n)$ the following relations (deduced from Eq. (56) after taking into account Eqs. (53) and (54)):

$$\int_{X_d^n} F'(f_m; [\lambda]x)g_n(x)d^n\sigma(x) = \langle \mathcal{W}_{m+n}, g_{n\lambda} \otimes f_m \rangle \quad \text{for } \lambda > 0,$$
(59)

$$\int_{X_d^n} F'(f_m; [\lambda]x)g_n(x)d^n\sigma(x) = \langle \mathcal{W}_{m+n}, f_m \otimes g_{n-\lambda}^{\leftarrow} \rangle \quad \text{for } \lambda < 0.$$
(60)

The l.h.s. of Eqs. (57) (or (58)) and (59) (or (60)) are respectively the boundary values of the holomorphic functions

$$G_{(f_m,g_n)}(\lambda) = \int_{\sigma \in \mathcal{K}_1} P_{\mathcal{K}_1}(\mathbf{U}] x) g_n(x) d^n \sigma(x)$$
(61)

defined for $\lambda \in \mathbf{C}_+$ and

$$\mathbf{P}_{\mathbf{r}}^{\mathbf{r}} \mathbf{P}_{\mathbf{r}}^{\mathbf{r}} \mathbf{P}_{\mathbf{r}}^{\mathbf{r}} (\mathbf{j}_{m}, [\lambda]x) g_{n}(x) d^{n} \sigma(x)$$

$$(62)$$

defined for $\lambda \in \mathbf{C}_-$. For an arbitrary function $g_n \in \mathcal{D}(X_d^n)$, these two holomorphic functions are distinct from each other. Now, if g_n is taken in $\mathcal{D}(\mathcal{U}_{h(x_0)}^n)$, the r.h.s. of Eqs. (58) and (60) coincide in view of local commutativity, and therefore these two holomorphic functions admit a common holomorphic extension $G_{(f_m,g_n)}(\lambda)$ in $\mathbf{C} \setminus \mathbf{R}_+$ whose boundary values on $\mathbf{R} \setminus 0$ satisfy the properties a) and b) of the theorem. (in view of Eqs. (57)—(60)).

Proof of Lemma 2

We concentrate on part a) of the lemma, part b) being completely similar. At first, the fact that the function $(z, \lambda) \mapsto H([\lambda]z)$ can be analytically continued in $\mathcal{Z}_{n+1} \times \mathbf{C}_+$ is a result of purely geometrical nature (based on the tube theorem) which can be obtained as a direct application of lemma 3 (ii) of Appendix A. In fact, for each point $x \in \mathcal{J}_n^{(r)}$, the set $\{z = [\lambda]x; \lambda \in \mathbf{C}_+\}$ is contained in Δ (namely in \mathcal{Z}_{n+} , as it directly follows from Eq. (3) and from the definitions of $\mathcal{J}_n^{(r)}$ and \mathcal{Z}_{n+}). One can even check that each point $x \in \mathcal{J}_n^{(r)}$ is on the edge of a small open tuboid $\tau(x)$ contained in \mathcal{Z}_{n+} such that $\{z = [\lambda]z'; z' \in \tau(x), \lambda \in \mathbf{C}_+\} \subset \mathcal{Z}_{n+} \cup \mathcal{V} \subset \Delta$. On the other hand, for each point $z \in \mathcal{Z}_{n+}$ there exists a neighbourhood $\delta_+(z)$ of the real positive axis and a neighbourhood $\delta_-(z)$ of the real negative axis in the complex λ -plane, such that the set $\{[\lambda]z; \lambda \in \delta^+(z) \cup \delta^-(z)\}$ is contained in Δ : for $\lambda \in \delta_+(z)$ and $\lambda \in \delta_{-}(z)$ the corresponding subsets are respectively contained in \mathbb{Z}_{n+} and in \mathbb{Z}_{n-} . Therefore, the assumptions of lemma 3 (ii) of Appendix A are fulfilled (by choosing the set Q of the latter as a subset of $\tau(x)$ and $D' = \mathcal{Z}_{n+}$ after an appropriate adaptation of the variables). In order to see that the new domain thus obtained (i.e. $\{z = [\lambda]z'; z' \in \mathbb{Z}_{n+}, \lambda \in \mathbb{C}_+\}$ yields an enlargement of Δ , it is sufficient to notice that every real point x such that at least one component $x_j - x_{j-1}$ is time-like is transformed by any complex transformation $[\lambda]$ into a point outside $\mathcal{Z}_{n\pm}$ and this is of course also true for all points $z \in \mathbb{Z}_{n+1}$ tending to such real (boundary) points (the neighbourhoods $\delta^{\pm}(z)$ becoming arbitrarily thin By composing σ_n with $z_j = \text{th}(\zeta_j/2)$, we obtain a self-conjugate holomorphic diffeomorphism τ_n of the tube

$$\{\zeta = \xi + i\eta \in \mathbf{C}^{nd} : |\eta_j| < \pi/2, \ 1 \le j \le nd\}$$
(105)

onto a complex neighborhood of a_n in $X_d^{(c)n}$ such that $\tau_n(0) = a_n$ and the image of the tube

$$\Theta_n = \{ \zeta = \xi + i\eta \in \mathbf{C}^{nd} : 0 < \eta_j < \pi/2, \ 1 \le j \le nd \}.$$

$$(106)$$

is contained in \mathcal{Z}_n . Let

$$B_{n\,m}(\zeta,\,\,\zeta') = A_{n\,m}(\tau_n(\zeta),\,\,\tau_m(\zeta')).$$
(107)

The functions $B_{n\,m}$ are holomorphic in $\Theta_n \times \Theta_m^*$. Since for $\zeta = \xi + i\eta \in \mathbb{C}$,

$$th (\zeta/2) = \frac{sh\,\xi + i\,sin\,\eta}{2|ch\,(\zeta/2)|^2},\tag{108}$$

the $B_{n\,m}$ satisfy

They have boundary values $B_{n\,m}^{(v)}$ in the sense of generalized functions as a structure st-functions of faster than exponential decrease. These boundary values satisfy, for our three equence $\{f_n\}, f_0 \in \mathbb{C}, f_n \in \mathcal{D}(\mathbb{R}^{nd})$ for $n \geq 1$,

$$\sum_{n, m} \int f_n(\xi) \xi' f_n(\xi) \overline{f_m(\xi')} d\xi d\xi' \ge 1.$$
(110)

Let now **Preview**
$$\mathbf{Page}_{n, \varepsilon(\xi)} = C(\varepsilon) \exp\left(-\sum_{j=1}^{nd} (\xi_j^2/\varepsilon)\right),$$
 (111)

where $C(\varepsilon)$ is chosen so that $\int \rho_{n, \varepsilon}(\xi) d\xi = 1$. For each $\mu \in \mathbf{C}^{nd}$, the function $\xi \mapsto \rho_{n, \varepsilon}(\xi + \mu)$ is of gaussian decrease, and depends holomorphically on μ . In particular if $\mu_n \in \Theta_n$, $\mu'_m \in \Theta_m^*$,

$$\int_{\mathbf{R}^{nd}\times\mathbf{R}^{md}} B_{nm}^{(v)}(t, t') f_n(\xi) \rho_{n, \varepsilon}(t-\mu_n-\xi) \overline{f_m(\xi')\rho_{m, \varepsilon}(t'-\bar{\mu}'_m-\xi')} dt dt' d\xi d\xi'$$

$$= \int_{\mathbf{R}^{nd}\times\mathbf{R}^{md}} B_{nm}(t+\mu_n, t'+\mu'_m) f_n(\xi) \rho_{n, \varepsilon}(t-\xi) \overline{f_m(\xi')\rho_{m, \varepsilon}(t'-\xi')} dt dt' d\xi d\xi',$$
(112)

since both sides define analytic functions in $\Theta_n \times \Theta_m^*$ whose boundary values for real μ_n , μ'_m coincide. The lhs satisfies the positivity conditions, by virtue of Eq. (110), if we chose $\mu'_n = \bar{\mu}_n$ for all n. It follows, by letting ε tend to 0 in the rhs, that the functions B_{nm} have the property (G.0) of Glaser's theorem 1 and therefore all the properties (G.0)-(G.4) in the sequence of domains $\{\Theta_n\}$. Coming back to the original variables, Glaser's theorem 1 now shows that the same properties, in particular (G.2), extend to the entire tuboid $\{Z_n\}$. We have thus proved the following

Proposition 5 For any integer $M \ge 1$, there exist a sequence $\{F_{\nu, 0} \in \mathbf{C}\}_{\nu \in \mathbf{N}}$ and, for each integer $n \in [1, M]$, a sequence $\{F_{\nu, n}\}_{\nu \in \mathbf{N}}$ of functions holomorphic in \mathcal{Z}_n , such that, for every n and m in [1, M], $z \in \mathcal{Z}_n$, $w \in \mathcal{Z}_m^*$,

$$W_{m+n}(w_{\leftarrow}, z) = \sum_{\nu \in \mathbf{N}} \overline{F_{\nu, m}(\bar{w})} F_{\nu, n}(z), \qquad (113)$$

where the convergence is uniform on every compact subset of $\mathcal{Z}_m^* \times \mathcal{Z}_n$.

The domain U_1 of Eq. (139) is not a tube. We can however inscribe in it increasing unions of topological products of lunules which are isomorphic to tubes. In fact, for every $A > \frac{1}{\pi}$, there exists an $\varepsilon > 0$ such that U_1 contains

$$V_A = \{ (\omega, \zeta) \in \mathbf{C}^{1+N} : \omega \in L(A, \varepsilon), \quad \zeta_j \in L(A, \pi - 1/A) \} \\ \cup \{ (\omega, \zeta) \in \mathbf{C}^{1+N} : \omega \in L(A, \pi - 1/A), \quad \zeta_j \in L(A, \varepsilon) \}.$$
(141)

Using the conformal map (128) in all variables, we can map V_A into a tube whose holomorphy envelope is its convex hull. Returning to the variables (ω, ζ) , and taking the limit $A \to \infty$ shows that the functions $G_{s,a}$ are holomorphic in the interior of the convex hull of S_1 , namely

$$\bigcup_{0 < \theta < \pi} \{ (\omega, \zeta) \in \mathbf{C}^{1+N} : 0 < \operatorname{Im} \omega < \pi - \theta, \quad 0 < \operatorname{Im} \zeta_j < \theta, \ \forall j \}.$$
(142)

This set is the image of the domain Δ_a introduced in Eq. (124) under the mapping $w \mapsto \mu = w - w^{-1} \mapsto \omega$, $z \mapsto \zeta$ defined in Eq. (135), and therefore the assertion of Lemma 4 follows.

Lemma 3 (i) in the special case D = P follows from the latter by letting *a* tend to 0. 2. We now prove Lemma 3 (ii) in the case when $D' = \rho Q$ for some real $\rho > 1$. The proof of this is the same as that of Lemma 4, except that the change of coordinates (138) is replaced by

$$z_j = \exp(i\zeta_j), \quad (1 \le j \le N).$$
(143)

This again allows the use of the tube theorem. 3. Lemma 3 (ii) follows from this by using chains of pollows s, and (i) follows in the same way from the special case D = P and (ii).

B Appendix Amma of Hallard Wightmar

In [23], Tall and Wightman provering a lowing lemma

Lemma 5 Let $M \in L_+(\mathbf{C})$ be such that $T_+ \cap M^{-1}T_+ \neq \emptyset$. There exists a continuous path $t \mapsto M(t)$ from the interval [0, 1] into $L_+(\mathbf{C})$ such that M(0) = 1, M(1) = M and that, for every $z \in T_+ \cap M^{-1}T_+ \subset \mathbf{C}^{d+1}$, $M(t)z \in T_+$ holds for all $t \in [0, 1]$.

This lemma is proved in [23] for the case $d + 1 \leq 4$ (a very clear exposition also appears in [32]). It is extended to all dimensions in [24]. We give another proof based on holomorphic continuation. As noted in the above references, if $M \in L_+(\mathbf{C})$ is such that the statement in Lemma 5 holds, then it holds for $\Lambda_1 M \Lambda_2$ for any $\Lambda_1, \Lambda_2 \in L_+^{\uparrow}$, as well as for M^{-1} . It is therefore sufficient to consider the case when M is one of the normal forms classified by Jost in [24]. M can then be written in the form:

$$M = \begin{pmatrix} M_1(i) & 0\\ 0 & M_2(i) \end{pmatrix}$$
(144)

where $t \mapsto M_1(t)$ is a one-parameter subgroup of the $p \times p$ Lorentz group, real for real t, with $p \leq 3$, and $t \mapsto M_2(t)$ is a one-parameter subgroup of the $(d+1-p) \times (d+1-p)$ orthogonal group, real for real t. In the generic case $p \leq 2$, $M_1(t) = 1$ if p = 1 and, if p = 2, $M_1(t) = [\exp at]$ for some real a with $|a| \leq \pi$. We focus on this case first. Replacing M by M^{-1} if necessary, we may assume $0 < a \leq \pi$. For any $z \in T_+$ the set $\Delta(z, M) = \{t \in \mathbf{C} : M(t)z \in T_+\}$ is invariant under real translations, i.e. is a union of open strips parallel to the real axis. Let

$$E(M) = \{ \mathbf{T}_{+} \cap M^{-1}\mathbf{T}_{+} \} = \{ z \in \mathbf{C}^{d+1} : \mathbf{R} \cup (i + \mathbf{R}) \subset \Delta(z, M) \}.$$

Denote $z(s) = (z^{(0)}, z^{(1)}, sz^{(2)}, \ldots, sz^{(d)})$. If $z \in E(M)$, then $z(s) \in E(M)$ for all $s \in [0, 1]$. The set $\Delta(z(0), M)$ contains the segment i[0, 1], and hence $i[0, 1] \subset \Delta(z', M)$ for all z' in a sufficiently

- [32] Streater, R.F., Wightman, A.S.: *PCT, Spin and Statistics, and all that* W.A. Benjamin, New York 1964.
- [33] Unruh, W.G.: Notes on black-hole evaporation. Phys. Rev. D 14, 870 (1976).
- [34] Wightman, A.S.: Quantum field theory in terms of vacuum expectation values. Phys. Rev. 101, 860 (1956).
- [35] Wightman, A.S.: Analytic functions of several complex variables in *Relations de dispersion et particules élémentaires*, C. De Witt and R. Omnes eds. Hermann, Paris (1960).

Preview from Notesale.co.uk Page 32 of 32