This theorem neither requires positivity nor Lorentz covariance. It expresses a property of the
domain of holomorphy of the Wightman functions, and of the boundary values from this domain. In
fact, it states that appropriate boundary values of the (m + n)—point holomorphic function 20,4,
taken in the region where all the variables w, ..., wm, 21,..., 2, belong to W,y N Xy, are holomorphic

with respect to the group variable A (for A € C\ R4) in the orbits (w,z) — (w, [A]z) of Th(w (with

w=(w1,..., W), = (T1,..., Tpn), A= e%) and such that:
for A > 0,
W (w, [A+1i0]7) = Wingn(w, Nz),  Wingn(w, A —i0]z) = Winin (N, w)  (47)
and for A\ < 0, putting z = (y,..., 1),
Wonin(w, Nz) = Winin(w, Nze) =W (Nze, w) (48)

the latter equality being a direct consequence of locality (since x € Wy and A <0 imply Nz € W(’l‘))
The theorem will be proved here under the simplifying assumption that the temperedness condition
(17) holds.

Proof
Four permuted branches of the function 2, are involved in the proof. The V&l@l % el
will always be kept real in W( ) N X', while the variables z = ﬁa- plex (in X ( )n ") and

we denote y = Imz. The corresponding analytlmt iables z (described below) are
obtained in the boundaries (i.e. in the “face” ur perm tub01ds T+ according to

the prescription of our weak spectgal ¢ In view of the % boundary value procedure,
restricted to the subset of vari blé‘ analytl it ﬁ tained whenever one smears out
the permuted functidy @N under conside 10{1&:7% ed function f,, € D(W(T) N X7T"). (this
functm@ex@ as t rﬁ@ d 7., in the statement of the theorem). These four
branch

1) Wign(wi, ...y Wi, 21,5 2n) = Wign(w, 2), holomorphic in the tuboid:
Znt = {Z eX\" meViy gy eV j=2.., n};
i) Wingn(2n,s .oy 21, Wi,..vy W) = Wingn(ze, w), holomorphic in the opposite tuboid:
Z,_-={z¢€ Xéc)"; pmeVo,yj—yj1 €V, j=2,..., nk
i) Wogn(21,-+ 5 2Zny, Ww1,..., W) = Wiin(2z, w), holomorphic in the tuboid:
2, ={re X\ yoe Vo, yj g1 € Vi i =2, )
iv) Wogn (Wi, ...y Wy Zny..vy 21) = Wign(w, 2z ), holomorphic in the opposite tuboid:

Z :{ZGXCSC)"; Yn €EViy;—yj—1 €Vo,j=2..., n}.

Correspondingly, with the fixed function f,, € D(W(’Z}) NX]") we associate the following four functions
2+ Fy(fm; 2) and 2z — Fi(fm; 2):

F—‘r(fm; Z) = o Wm-‘rn(wv Z) fM(w) dmo(w)a F (fm§ Z) = o Wm+n(2<—a w) ( ) de(’lU)
d d (49)
Fjr(fm; z) = o Wm+n(z7 w) fM(w) dmo(w), Fi(fwﬁ Z) = o Wongn (w, Z<—) fm( ) d™ ( )

(50)
which are respectively holomorphic in Z, 4, Z,_, 2’4+ and Z’,,_. By letting the variables z tend
to the reals from the respective tuboids Z, ., Z,_, Z’,+ and Z’,, _, and taking the corresponding
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Since the function F(f,; z) satisfies the analyticity and temperedness properties of the function
H(z) of Lemma 2 a), it follows that one can take the boundary value onto X7 x C4 from Z,, 4+ x C of
the holomorphic function (z, A) — F(fm; [A]z) and obtain for every g, € D(X}) the following relations
(deduced from Eq. (55) after taking into account Egs. (51) and (52)):

/n F(fm; [)\]Ji)gn(,’b)dnd(!t) = <Wm+nu fm ®gn)\> for A > 07 (57)

d

F(fm; Nz)gn(x)d"o(x) = Wintn, 9;1_)\ ® fm) for A <0. (58)
X
Similarly, one can apply the results of Lemma 2 b) to the function H'(z) = F'(fm; z); one can
thus take the boundary value onto X x C_ from Z’,, ; x C_ of the holomorphic function (z, ) —
F'(fm; [Az) and obtain for every g, € D(X7) the following relations (deduced from Eq. (56) after
taking into account Eqgs. (53) and (54)):

/ F (s W@ 0(2) = Wi gur © f) for A> 0, (59)

[ s Dda@)0() = Wi, fn0573) for A< 0 u\( (60)
The Lh.s. of Egs. (57) (or (58)) and (59) (or (60)) are respeca\r@e.&ggry values of the

holomorphic functions Q
defined for A € C; and \N "( O

ﬁ
defin d? \ e\,\ ad@F 5 ’ N

r A€ C_. For an arbltr?yfunction gn € D(X7), these two holomorphic functions are distinct
from each other. Now, if g, is taken in DU}, ), the rhs. of Eqs. (58) and (60) coincide in view
of local commutativity, and therefore these two holomorphic functions admit a common holomorphic
extension Gy, 4,.)(A) in C\ Ry whose boundary values on R\ 0 satisfy the properties a) and b) of the
theorem. (in view of Egs. (57)—(60)).

Proof of Lemma 2

We concentrate on part a) of the lemma, part b) being completely similar. At first, the fact that the
function (z, A) — H([A]z) can be analytically continued in Z, ; x C is a result of purely geometrical
nature (based on the tube theorem) which can be obtained as a direct application of lemma 3 (ii) of
Appendix A. In fact, for each point z € ‘775”, the set {z = [AJx; A € C,} is contained in A (namely
in Z, 4+, as it directly follows from Eq. (3) and from the definitions of T and Z,+). One can even
check that each point x € J,Y’ is on the edge of a small open tuboid 7(x) contained in Z,, + such that
{z=[\7; Z er(z), A€ C+} C Z,4 UV C A. On the other hand, for each point z € Z, 1 there
exists a neighbourhood 4 (z) of the real positive axis and a neighbourhood d_(z) of the real negative
axis in the complex A-plane, such that the set {[\]z; A € §7(2)Ud~(2)} is contained in A: for A € 5, (z)
and X\ € §_(z) the corresponding subsets are respectively contained in Z,, + and in Z,, _. Therefore, the
assumptions of lemma 3 (ii) of Appendix A are fulfilled (by choosing the set @ of the latter as a subset
of 7(x) and D' = Z,, | after an appropriate adaptation of the variables). In order to see that the new
domain thus obtained (i.e. {z = [N2'; 2’ € 2,4, X € C.} yields an enlargement of A, it is sufficient
to notice that every real point x such that at least one component x; — z;_; is time-like is transformed
by any complex transformation [\] into a point outside Z,, + and this is of course also true for all points
2 € Z, 4+ tending to such real (boundary) points (the neighbourhoods §%(z) becoming arbitrarily thin
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By composing o, with z; = th (;/2), we obtain a self-conjugate holomorphic diffeomorphism 7,, of
the tube
{(=¢+ineC™ : |nj| <m/2, 1<j < nd} (105)

(e)n

onto a complex neighborhood of a, in X ;" such that 7,,(0) = a,, and the image of the tube

O, ={C=¢+ineC™ : 0<n <7/2, 1 <j<nd)}. (106)
is contained in Z,,. Let
Bum(Cs ¢') = Anm(ma(C), Tm(())- (107)
The functions B,, ,, are holomorphic in ©,, x ©,. Since for ( = £ + in € C,
shé +isinn
th((/2) = ————=, 108
72 = S crar 10

the B, ,, satisfy

ol&l \" &l \"
Bnm 9 ! SKI T K/ T - 7 9
Bom(6 ) §<|smm—|) * ;<|Slnn‘|> WK
VC=¢4+ine O, (=& +in 6@* u
(v)

They have boundary values By, in the sense of generahzed funcS@lest‘ functlons of faster than
exponential decrease. These boundary values satisty, ence {f.}, fo € C, f. € D(R™)
forn>1, 2
Z%*@ A& e g €é&€ 3 (110)
Let now
‘?‘e\, 9@96 3
eXp - (gj /5) ) (111)

where C(e) is chosen so that [ p, -(§)dé = 1. For each u € C™, the function & — pp, (€ + p) is of
gaussian decrease, and depends holomorphically on u. In particular if p, € ©,, 4., € OF,,

/Rnd Rmd anm(ta tl) fn(g) pn, a(t — Mn — 6) fm(gl)pm, e(ﬁl - ﬂ;n - 6/) dt dt/ d€ d€/

. Brm(t+ o, t' + o) fo(€) P, <(t = &) fin(€)pm, (' — &) dtdt’ d€ d€,

(112)

since both sides define analytic functions in ©,, x O}, whose boundary values for real p,, p!, coincide.
The lhs satisfies the positivity conditions, by virtue of Eq. (110), if we chose u), = fi, for all n. It
follows, by letting € tend to 0 in the rhs, that the functions B, ,, have the property (G.0) of Glaser’s
theorem 1 and therefore all the properties (G.0)-(G.4) in the sequence of domains {©,,}. Coming back
to the original variables, Glaser’s theorem 1 now shows that the same properties, in particular (G.2),
extend to the entire tuboid {Z,}. We have thus proved the following

Proposition 5 For any integer M > 1, there exist a sequence {F,, o € C},en and, for each integer

n € [1, M|, a sequence {F, n},en of functions holomorphic in Z,, such that, for every n and m in
1, M), z€ Z,, we Z},

Wern We—, Z Fu m 1/ n( )7 (113)
veN

where the convergence is uniform on every compact subset of Z% x Z,.
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The domain U; of Eq. (139) is not a tube. We can however inscribe in it increasing unions of topological
products of lunules which are isomorphic to tubes. In fact, for every A > —, there exists an ¢ > 0 such
that U; contains

={(w, () € C'N s we L(A, €), ¢ €L(A m—1/A)} (141)
U {lw, ) e C'™N  we LA, m—1/A), ¢; € L(A, ¢)}.

Using the conformal map (128) in all variables, we can map V4 into a tube whose holomorphy envelope
is its convex hull. Returning to the variables (w, (), and taking the limit A — oo shows that the
functions G , are holomorphic in the interior of the convex hull of S;, namely

U {w, Q)eC™ : 0<mw<m—0, 0<Im¢ <0, ¥j}. (142)
o<o<m

This set is the image of the domain A, introduced in Eq. (124) under the mapping w +— p = w—w=!
w, z + ¢ defined in Eq. (135), and therefore the assertion of Lemma 4 follows.

Lemma 3 (i) in the special case D = P follows from the latter by letting a tend to 0.
2. We now prove Lemma 3 (ii) in the case when D’ = p @ for some real p > 1. The proof of this is the
same as that of Lemma 4, except that the change of coordinates (138) is replaced by K

zj = exp(i¢;), (1<j<N). CO u (143)
This again allows the use of the tube theorem. \e
3. Lemma 3 (ii) follows from this by using chains ]@t% follows in the same way from the
special case D = P and (ii) “ 32
B Appendix e\Nm-‘na of Qﬂd nghtman

In [23 @1€@W ightman prov@ algng lemma

Lemma 5 Let M € L (C) be such that T N M~1T, # 0. There exists a continuous path t — M (t)
from the interval [0, 1] into Ly (C) such that M(0) = 1, M(1) = M and that, for every z € T4 N
M='T, c CH M(t)z € Ty holds for all t € [0, 1].

This lemma is proved in [23] for the case d +1 < 4 (a very clear exposition also appears in [32]).
It is extended to all dimensions in [24]. We give another proof based on holomorphic continuation. As
noted in the above references, if M € L (C) is such that the statement in Lemma 5 holds, then it holds
for A M A5 for any Ay, Ag € Ll, as well as for M~!. It is therefore sufficient to consider the case when
M is one of the normal forms classified by Jost in [24]. M can then be written in the form:

Mo < MB(Z) Mg(z) > (144)

where ¢ — M;(t) is a one-parameter subgroup of the p x p Lorentz group, real for real ¢, with p < 3,
and t — Ma(t) is a one-parameter subgroup of the (d + 1 — p) x (d + 1 — p) orthogonal group, real for
real ¢t. In the generic case p < 2, M;(t) = 1if p=1 and, if p = 2, M1(t) = [exp at] for some real a with
la| < m. We focus on this case first. Replacing M by M ~! if necessary, we may assume 0 < a < 7. For
any z € T4 the set A(z, M) ={t € C : M(t)z € T,} is invariant under real translations, i.e. is a
union of open strips parallel to the real axis. Let

EM)={T,nM Ty} ={zcC¥! : RU(i+R)CA(z, M)}.
Denote z(s) = (2(0, 2 522 52 If 2 € B(M), then z(s) € E(M) for all s € [0, 1]. The
set A(z(0), M) contains the segment [0, 1], and hence [0, 1] C A(z/, M) for all 2’ in a sufficiently
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