- target cells: osteoclasts & osteoblasts
- specific actions:
 - inhibits osteoclasts to i bone resorption
 - stimulates osteoblasts to h Ca++ deposition from the blood to the bones
- **response**: Ca++ level of blood i & returns to normal
- negative feedback: calcitonin release is inhibited once Ca++ levels in blood return to normal

PARATHYROID GLAND

-Four (4) small glands embedded on posterior side of thyroid gland

PARATHYROID GLAND HORMONES

1. Parathyroid Hormone (PTH)

- also called "parathormone"
- important for Ca++ homeostasis -
- stimulus: hypocalcemia or i Ca++ levels in the blood (humoral regulation)
- target cells: osteoclasts & kidneys
- specific actions:
 - stimulates osteoclasts to resorption & move, Cart bones to the br
 - stimulates kidneys to produce calcitriol , the active form of vitamin D which \uparrow absorption of Ca ++ & PO4- from the small intestine
 - ↑ reabsorption of Ca++ in the kidneys to i its excretion
 - \uparrow excretion of PO4- from the kidneys
- response: Ca++ level of blood h & returns to normal
- **negative feedback**: PTH release is inhibited once Ca++ levels in blood return to normal

PANCREAS

flattened organ located on LUQ of abdominal cavity, posterior the to

stomach & in curve of the duodenum

- has both exocrine & endocrine functions
- Islets of Langerhans or pancreatic islets: the endocrine portion of the pancreas w/c contains 2 types of cells w/c produce hormones that regulate metabolism of glucose

PANCREATIC HORMONES

1. Glucagon

- produced by the alpha cells of the pancreatic islets
- stimulus: hypoglycemia or i glucose levels in the blood (humoral regulation)
- target cells: liver
- specific actions:
 - glycogenolysis (breakdown of glycogen to glucose)
 - gluconeogenesis (conversion of fatty acids & excess amino acids into glucose)
- response: glucose live of blood h & returns to rorna

pre NOTE Segative feedback: glucagon release is return to normal

2. Insulin

- produced by the beta cells of the pancreatic islets
- stimulus: hyperglycemia or h glucose levels in the blood (humoral regulation)
- target cells: various body cells
- specific actions: -
 - \uparrow diffusion of glucose into the cells & \uparrow utilization by the cells
 - glycogenesis (conversion of glucose to glycogen in liver cells & skeletal muscles)
- response: glucose level of blood i & returns to normal