## Enzymes do not affect K<sub>eq</sub>

- Enzymes emerge unchanged at the completion of a reaction.
- The enzyme has no effect on ΔG<sup>0</sup>, which is a function of the initial and final states of the reactants
  ΔG<sup>0</sup>= RT In K<sub>eq</sub>
  Calculation of K<sub>eq</sub> including enzyme
  A of 30

A+BEEN

[P][Q][Enzyme]  $K_{eq} = \frac{1}{[A][B][Enzyme]}$ 

reduces to one identical to that for the reaction without enzyme

$$\mathsf{K}_{\mathsf{eq}} = \frac{[\mathsf{P}][\mathsf{Q}]}{[\mathsf{A}][\mathsf{B}]}$$

- Enzyme concentration has therefore **no effect on K**<sub>en</sub>
- Because enzymes have no effect on  $K_{eq}$  they **do not affect**  $\Delta G^0$  as the factors R and T are constant (from the equation  $\Delta G^0 = -RT \ln K_{eq}$ ) •
- However equilibrium is reached much faster when enzyme is present because of ٠ increased rate of reaction

-As substrate concentration is increased , the  $v_i$  increases until it reaches a maximum value  $V_{max}$ .

-When further increases in substrate concentration do not further increase v<sub>i</sub> the enzyme is 'saturated' with destrate

-Curve is hyperbolic fro

-At point of the ES complexes with a corresponding change in v<sub>i</sub>

-At point C, essentially all the enzyme is present as the ES complex

-no free enzyme remains

-further increase in [S] can not increase the rate of the reaction

-Case B is where half the enzyme molecules are 'saturated with' substrate and the velocity is accordingly half the maximal velocity ( $V_{max}/2$ ) at a particular enzyme concentration

- The [ES] is key to understanding the kinetic behaviour
  - The enzyme binds substrate in a relatively fast manner
  - The ES complex then breaks down in a slover second step to form product. Because it is slow it must be rate loning
    E + S to be a slover second step to form product.
- At low [S] most of the enzyme is in the uncombined E form. The rate is proportional to [S] because the equilibrium of the above is shifted towards formation of ES as [S] increase
- V<sub>max</sub> is observed when virtually all enzyme is present in the ES complex and [E] is small
- V<sub>max</sub> reveals the turn-over number of the enzyme ie the number of substrate molecules converted to product by an enzyme molecule per unit time when the enzyme is fully saturated
- The turn-over number is equal to the rate constant  $k_2$ , ( $k_{cat}$ )
- V<sub>max</sub> reveals the turn-over number of an enzyme if the concentration of the active sites [E<sub>t</sub>] is known

 $V_{max} = k_2[E_t] \qquad k_2 = V_{max} / [E_t]$ 



If  $k_2 + k_{-1} \neq k_{-1}$ , then  $1/K_m$  underestimates the affinity  $1/K_d$ 

- Km equals to the dissociation constant of the ES complex if  $\rm K_2$  is much smaller than  $\rm K_{-1}$
- When this condition is met , K<sub>m</sub> is a measure of the strength of the ES complex: a high K<sub>m</sub> indicates weak binding ; a low Km indicates strong binding

## The Hill equation describes the behaviour of enzymes that exhibit cooperative binding of substrate

- -Some enzymes bind their substrates in a cooperative lashion analogous to the binding of oxygen by hemoglobin
- -Cooperative binding is encountered in multimeric enzymes that bind substrates at multiple Stes
- -In enzymes that display acside cooperativity in binding to substrate, the shape of the curve that relate vi to changes in [S] is sigmoidal
- -Neither the Michaelis-Menten equation nor the Lineweaver-Burk plot can be used to evaluate cooperative saturation kinetics

