Advantages and disad wantages of angle-axis Notesale Angle-prise is mining Porientation representation. P 4-parameters are needed

- Orientations represented in angle-axis cannot be *added* together easily.
 - We can neither multiply nor add rotation axis or rotation angle.
 - We should convert the angle-axis rotations to rotation matrices, then multiply them.

Conversion from rotation matrix to Euler angles

$$\mathbf{R} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{33} \end{bmatrix} = \begin{bmatrix} c_{\beta}c_{\gamma} & s_{\beta}e_{\beta}c_{\gamma} - c_{\alpha}s_{\gamma} & c_{\alpha}s_{\beta}c_{\gamma} + s_{\alpha}s_{\gamma} \\ s_{\beta}s_{\gamma} & s_{\alpha}s_{\beta}s_{\gamma} + c_{\alpha}c_{\gamma} & c_{\alpha}s_{\beta}s_{\gamma} - s_{\alpha}c_{\gamma} \\ s_{\alpha}c_{\beta} & c_{\alpha}c_{\beta} \end{bmatrix}$$

- The Ruler angle Car be derived as:
- $s_{\beta} = -r_{31}$
- There are two solutions for β :
 - $\beta = -\sin^{-1}r_{31}$
 - $\beta = 180^\circ + \sin^{-1} r_{31}$
- We choose one solution, namely the solution satisfying $-90^{\circ} \le \beta \le 90^{\circ}$
 - Thus, we always have $\cos(\beta) \ge 0$
- $\tan \alpha = \frac{r_{32}}{r_{33}}$
- $\tan \gamma = \frac{r_{21}}{r_{11}}$

Uses of the homogeneous transformation matrix **T**

Description of frame relationship:
 Given two frames, the part of the part of

2. Transforming the reference frame of a point **p** from frame 1 to frame 2: ${}^{1}\widetilde{\mathbf{p}}^{1} = \mathbf{T}_{2}^{1}{}^{2}\widetilde{\mathbf{p}}^{2}$

Uses of the homogeneous transformation matrix **T**

- 3. Transforming a point that the co.uk
 with rigid-body motion, 27
 - A body endves with frame 2 attached prev page
 - Frame 1 is the initial / world reference frame.
 - A point p_1 is transformed to the new position p_2 during the rigid motion described by T_2^1 .
 - $\mathbf{p}_2 = \mathbf{T}_2^1 \mathbf{p}_1$
 - Note that p₁ and p₂ are homogeneous vectors, we dropped the for simplicity.
 - \boldsymbol{p}_1 and \boldsymbol{p}_2 are referenced to frame 1

