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continuous at b.

The intermediate value theorem says that for a function f continuous on
[a, b], for any y0 between f(a) and f(b), y0 = f(c) for some c ∈ [a, b]. It can be
used to show the existence of roots to an equation within an interval.

Some functions f may not be defined at some c, yet limx→c f(x) = L might still
exist. Then, a continuous extension of f can be defined by

F (x) =

{
f(x) if x ∈ Df

L if x = c

2.5 Limits involving infinity and asymptotes

We say that f has a limit L as x approaches infinity and write limx→∞ f(x) = L
if for all ϵ > 0, there is an M ∈ R for which

|f(x)− L| < ϵ whenever x > M

Similarly, limx→−∞ f(x) = L if for all ϵ > 0, there is an N ∈ R for which

|f(x)− L| < ϵ whenever x < N

The limit laws from §2.1 apply here.

A line y = b is a horizontal asymptote to the graph y = f(x) if limx→−∞ f(x) =
b or limx→∞ f(x) = b.

Rational functions where the numerator has a degree 1 larger than the denomi-
nator have an oblique asymptote, obtained through polynomial long division.

Infinite limits are ways to describe function behaviour near points of infinite
discontinuity. We say f approaches infinity as x → c, and write limx→c f(x) =
∞ if for all B > 0, there exists δ > 0 for which

f(x) > B whenever 0 < |x− c| < δ

We say f approaches negative infinity as x → c, and write limx→c f(x) = −∞
if for all B > 0, there exists δ > 0 for which

f(x) < −B whenever 0 < |x− c| < δ

A line x = a is a vertical asymptote of the graph y = f(x) if limx→a− f(x) =
∞ or limx→a+ f(x) = ∞.
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The right-hand derivative is defined similarly. For f to be differentiable on [a, b],
it must be differentiable on (a, b), right-differentiable at a and left-differentiable
at b.

Differentiability implies continuity. That is, if f is differentiable at c, it is
necessary that it is continuous there as well. However, the opposite might not
be true. A continuous function can fail to be differentiable due to a corner, cusp
or a vertical tangent line, amongst other reasons.

3.3 Differentiation rules

Using the definition in §3.2, we can prove various rules for differentiation. The
power rule states that for n ∈ R,

d

dx
xn = nxn−1

The sum and constant multiple rules allow us to take derivatives of constant
multiples and sums of functions. For the remainder of this section, let u, v be
functions and c ∈ R.

d

dx
(cu) = c

du

dx
and

d

dx
(u+ v) =

du

dx
+

dv

dx

The product rule says that

d

dx
(uv) = u

dv

dx
+

du

dx
v

Note that this can be extended to multiple functions to evaluate (y1y2...yn)
′.

The quotient rule says that

d

dx

(u
v

)
=

v du
dx − u dv

dx

v2

If f ′ itself is a differentiable function, then we can take the second-order
derivative f ′′ = (f ′)′. In general, the nth-order derivative f (n) is found
from differentiating the previous derivative: f (n) = (f (n−1))′.

3.4 The derivative as a rate of change

By interpreting derivatives as rates, we can use calculus to analyse motion.
Consider a particle moving obeying the position function s. A displacement
is a change in position ∆s.

The velocity v = ds
dt is the instantaneous rate of change of position. The speed

is the magnitude of velocity |v|.
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In §5.1, we discussed areas. We can define the area under a curve f(x) over
[a, b] for a nonnegative f as

A =

∫ b

a

f(x) dx

The mean of f over [a, b] is defined as

av(f) =
1

b− a

∫ b

a

f(x) dx

5.4 The fundamental theorem of calculus

The fundamental theorem of calculus links the definite integral to the derivative.
This lets us evaluate integrals without taking limits of Riemann sums.

The mean value theorem for definite integrals says that for a function f
continuous on [a, b], there exists some c ∈ [a, b] for which

f(c) =
1

b− a

∫ b

a

f(x) dx

The first part of the fundamental theorem of calculus involves a function
F (x) =

∫ x

a
f(t) dt which is continuous on [a, b] and differentiable on (a, b) when

f is continuous on (a, b). The theorem then states that F is an antiderivative
of f . That is,

F ′(x) =
d

dx

∫ x

a

f(t) dt = f(x)

The second part of the fundamental theorem of calculus (evaluation
theorem) gives that ∫ b

a

f(x) dx = F (b)− F (a)

Thus, to evaluate an integral, we need only find an antiderivative and evaluate
it at the endpoints of the interval.

Writing f = F ′ in the above, we get the net change theorem, which says that
the integral of a rate over an interval is the net change of the function over that
interval.

The two parts of the fundamental theorem essentially show that differentiation
and integration are “inverse” operations.

Revisiting areas for more general functions that can be both positive and neg-
ative, we need to break up the interval into subintervals for which the function
is either entirely positive or negative and perform the integrals separately. The
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7.4 Exponential change and separable differential equa-
tions

Many real-life phenomena obey the property that their rate of change is pro-
portional to the quantity. This yields the initial value problem:

dy

dt
= ky, y(0) = y0

The solution to this is y = y0e
kt, and the quantity is said to undergo exponen-

tial change. If k > 0, the quantity undergoes exponential growth. If k < 0,
it undergoes exponential decay. k is the rate constant.

The above differential equation is an example of a separable differential equa-
tion, which takes the form

dy

dx
= g(x)h(y)

We can write this in differential form and integrate to get the implicit solution∫
dy

h(y)
dy =

∫
g(x) dx

Exponential functions are good models for many real situations. If population
growth is unrestricted, we can model it with exponential growth.

Radioactive decay follows exponential decay. The half-life is the time required
for a sample of radioactive material to decay to half its initial mass. It is given
by

Half-life =
ln 2

k

Heat transfer also obeys exponential decay. Newton’s law of cooling says that
the temperature difference H − HS , with HS being the temperature of the
surroundings, is directly proportion to the initial temperature difference.

7.5 Indeterminate forms and L’Hôpital’s rule

An expression is in indeterminate form if its value cannot be assigned with-
out further information. Examples of indeterminate forms include 0/0,∞/∞, 0 ·
∞,∞−∞,∞0 and 1∞.

Cauchy’s mean value theorem stipulates that for f, g continuous on [a, b]
and differentiable on (a, b), with g′(x) ̸= 0 throughout (a, b), then there exists
c ∈ (a, b) so that

f ′(c)

g′(c)
=

f(b)− f(a)

g(b)− g(a)
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8.7 Numerical integration

We may seek a numerical approximation to a definite integral
∫ b

a
f(x) dx if it

is hard or impossible to find an antiderivative of f . The Riemann sum (§5.2)
is an example of an approximation. We now discuss the trapezoidal rule and
Simpson’s rule.

For the sake of convenience, we assume n equally-spaced subintervals with
∆x = (b− a)/n. ∆x is called the step size.

The trapezoidal rule involves using areas under trapezoids in each subinterval.
The formula for each trapezoid’s area is ∆x(yk−1+yk)/2, so the approximation
is given by

T =
∆x

2
(y0 + 2y1 + ...+ 2yn−1 + yn)

Simpson’s rule involves using areas under parabolas. Each parabolic piece
is placed over 2 subintervals, so we need n to be even. The formula for each
parabolic region’s area is ∆x(yk−1 + 4yk + yk+1)/3, so the approximation is
given by

S =
∆x

3
(y0 + 4y1 + 2y2 + ...+ 2yn−2 + 4yn−1 + yn)

It is useful to find the maximum error from using the above approximations.
The error is the difference between the approximated and actual value of the
integral. We have

|ET | ≤
M(b− a)3

12n2
and |ES | ≤

M(b− a)5

180n4

In the formula for |ET |, we need f ′′ to be continuous. Then, M is an upper
bound of max |f ′′| on [a, b]. Similarly, in the formula for |ES |, we need f (4) to
be continuous. Then, M is an upper bound of max |f (4)| on [a, b]. In many
cases, finding the maximum of these derivatives exactly is not possible and we
have to find an upper bound.

Notice that the error for the trapezoidal rule varies with the inverse square of
n, whereas the Simpson’s rule varies with the inverse fourth power of n. Thus,
Simpson’s rule gives a better approximation. Also, the error formulae show
that Simpson’s rule gives the exact value of the integral for constant, linear,
quadratic and cubic functions. Similarly, the trapezoidal rule gives the exact
value for constant and linear functions.

8.8 Improper integrals

We can extend our definition of integrals to infinite intervals and functions that
have vertical asymptotes in their interval of integration.
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We define a random variable X to be a function assigning a probability to
each outcome in a sample space. If there are finitely many outcomes, X is dis-
crete. Else, it is continuous.

For continuous random variables, we define their probability distribution
function f to have the properties that f is defined on R, has finitely many
discontinuities, is nonnegative and is such that

∫∞
−∞ f(x) dx = 1. Then, we

define the probability that X takes on a value between c and d to be

P(c ≤ X ≤ d) =

∫ d

c

f(x) dx

Themedianm ofX is the value ofm so that
∫m

−∞ f(x)dx = 1/2. The expected
value (or mean) of X is given by

µ = E(X) =

∫ ∞

−∞
xf(x) dx

The variance of X is the expected value of (X−µ)2. The standard deviation
is the square root of variance. In symbols,

Var(X) =

∫ ∞

−∞
(x− µ)2f(x) dx and σX =

√
Var(X)

Certain phenomenon can be modelled by exponentially decreasing probability
distribution functions. X is then said to follow an exponential distribution,
and its probability density function is

f(x) =

{
0 if x < 0
1
µe

−x/µ if x ≥ 0

A uniform distribution models situations where each outcome is equally
likely. In this case,

f(x) =

{
0 if x < a or x > b
1

b−a if a ≤ x ≤ b

Many situations involve the normal distribution. It is observed that many
random variables approximately follow normal distributions. Then,

f(x) =
1

σ
√
2π

e−(x−µ)2/(2σ2)
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Further assuming f ′ and g′ to be continuous, and that the curve is traversed
exactly once from a to b, the arc length is

L =

∫ b

a

√(
dx

dt

)2

+

(
dy

dt

)2

dt

Note that the natural parametrization shows that the formula in §6.2 is a special
case of this formula. The arc length differential ds =

√
dx2 + dy2 also holds for

parametric curves.

11.3 Polar coordinates

A polar coordinate system is an alternative to the Cartesian plane. We fix a
point called the origin (or pole) and an initial ray. Then, for each point P
in the plane, we assign a polar coordinate pair (r, θ), where r is the directed
distance from the origin and θ is the angle measured counterclockwise from the
initial ray.

Note that the polar coordinates of a point are not unique. If (r, θ) represents
P , then so do (r, θ + 2nπ) and (−r, θ + (2n+ 1)π), where n ∈ Z.

Polar and Cartesian coordinates are related by the following formulae:

x = r cos θ and y = r sin θ

r2 = x2 + y2 and tan θ =
y

x
Some plane curves can be expressed both in Cartesian and polar equations.
However, one of these forms may be simpler to work with.

11.4 Graphing polar coordinate equations

Symmetries can be useful in graph sketching. Let (r, θ) be a point on the graph.
Then, if (r,−θ) is also on the graph, the graph is symmetric about the x−axis.
If (r, π − θ) is also on the graph, the graph is symmetric about the y−axis. If
(−r, θ) is also on the graph, the graph is symmetric about the origin.

The slope of a curve r = f(θ) at (r, θ), provided dx/dθ ̸= 0 there, is

dy

dx
=

f ′(θ) sin θ + f(θ) cos θ

f ′(θ) cos θ − f(θ) sin θ

Substituting f(θ) = 0, we see that the tangents at the origin have slope tan θ0,
where f(θ0) = 0. This tells us the shape of the graph near the origin.

An alternative approach to plotting a table of values is to first plot the graph
of r = f(θ) in a rθ−plane, then using the graph as a guide to sketch the graph
in the xy−plane.
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