- Recall that if y = f(x), then $e^{y} = \frac{\partial x}{\partial x} \times \frac{x}{y}$ Now suppose that $\Theta = f(x, y)$ Now the partial elasticities of z w.r.t. x and y are: $P = e^{\Theta x}_{x} = \frac{\partial z}{\partial x} \times \frac{x}{z}$; $P = \Theta = \frac{\partial z}{\partial y} \times \frac{y}{z}$
 - Note that these two elasticities can also be written as $\frac{\partial z}{\partial x} \div \frac{z}{x'}$ i.e. marginal function (w.r.t. x) divided by average (w.r.t. x) and $\frac{\partial z}{\partial v} \div \frac{z}{v}$, i.e. marginal function (w.r.t. y) divided by average (w.r.t. y)
 - PARTIAL DEMAND ELASTICITIES
 - Suppose that demand is $q^d = f(p, p_z, y)$, where p_z, y are the price of another product and the income of consumers
 - The other partial demand elasticities are:
 - price elasticity of demand, e^p
 - cross-price elasticity of demand, e^{z}
 - income elasticity of demand, e^{y}
 - Do examples 17.5 and 17.6

OTHER PARTIAL ELASTICITIES

- **OTHER PARTIAL ELASTICITIES** Production elasticities: **NOTESALE.CO.UK** Labour elasticity of production w.r.t. labour) = $e^L = \frac{\partial q}{\partial L} \times \frac{L}{q} = \frac{MPL}{APL}$. This shows the (percentage) change in production due to a 1% change in labour input.
- Capital elasticity of production (elasticity of production w.r.t. capital) = $e^{K} = \frac{\partial q}{\partial K} \times \frac{K}{a} = \frac{MPK}{APK}$. This shows the (percentage) change in production due to a 1% change in capital input.