
5.1.1 Similar Formulas

cos(θ) =
eι̇θ + e−ι̇θ

2
(5.7)

sin(θ) =
eι̇θ − e−ι̇θ

2ι̇
(5.8)

cos(z) =
eι̇z + e−ι̇z

2
(5.9)

sin(z) =
eι̇z − e−ι̇z

2
(5.10)

cosh z =
ez + e−z

2
(5.11)

sinh z =
ez − e−z

2
(5.12)

cosh ι̇z = cos z (5.13)

sinh ι̇z = ι̇ sin z (5.14)

5.1.2 De Moivre’s Theorem

(cos θ + ι̇ sin θ)n = cosnθ + ι̇ sinnθ (5.15)

From this it can be shown with z = eι̇θ

zn +
1

zn
= 2 cosnθ zn − 1

zn
= 2ι̇ sinnθ (5.16)

5.1.3 Roots of unity

zn = 1 = eι̇2kπ ⇒ z = eι̇2kπ/n (5.17)

where k is an integer and will take values 0, 1, 2, . . . n− 1 to give the n distinct roots

5.1.4 Logarithms

with z = reι̇(θ+2nπ)

Ln z = ln r + ι̇(θ + 2nπ) (5.18)

Restricting to principal value by constraining the argument of z to lie between −πtoπ we get
singlevalued Ln(z)

The definition of complex number raised to a complex power is in terms of already defined complex
functions:

tz = ezln(t) (5.19)

5.2 Complex Functions

lim
z→z0

f(z) =∞ if and only if lim
z→z0

1

f(z)
= 0 (5.20)

lim
z→∞

f(z) = w0 if and only if lim
z→0

f
1

z
= w0 (5.21)

lim
z→∞

f(z) =∞ if and only if lim
z→0

1

f(1/z)
= 0 (5.22)
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5.2.1 Cauchy-Reimann Equations

Suppose that for a complex-valued function

f(z) = u(x, y) + ι̇v(x, y) (5.23)

f ′(z) exists at a point z0 = (x0, y0). Then the first-order partial derivatives of u and v must exist
at (x0, y0) and they must satisfy the Cauchy-Reimann Equations:

ux = vy , uy = −vx (5.24)

And also
f ′(z0) = ux + ι̇vx (5.25)

• Differntiation of cauchy equations provides us with the fact that both u and v individually satisfy
laplace equations in 2D

∂2u

∂x2
+
∂2u

∂y2
= 0

∂2v

∂x2
+
∂2v

∂y2
= 0 (5.26)

• The family of 2D curves (in xy plane) u(x, y) = constant and v(x, y) = constant intersect at right
angles to each other.

• For multivalued complex function f(z), like exp(z), Lnz, z1/2 etc. we can make them single valued
and then use the analytic function analysis on it by concept of branch points and cuts

• Branch point is a point in Argand plane such that if z is varied in a closed loop enclosing the
branch point, f(z) doesn’t return to its original value, although z does since θ → θ + 2π doesn’t
affect z.

• Branch cuts are lines in the argand diagram, finite or infinite that prevents us to ever make a closed
loop enclosing a branch point.

• So, if we dont cross the branch cut, f(z) remains single-valued.

5.2.2 Singularities

• Isolated singularity: when f(z) isnt analytic at z0 but analytic at all points in the neighbourhood.

• Pole: most imp isolated singularity

• If

f(z) =
g(z)

(z − z0)n
(5.27)

such that g(z0) 6= 0 and is analytic in neighbourhood of z0 then its a pole of order n
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∇×A =
1

r

∣∣∣∣∣∣
r̂ rθ̂ ẑ
∂
∂r

∂
∂θ

∂
∂z

A1 rA2 A3

∣∣∣∣∣∣ (6.11)

Spherical

∇f =
∂f

∂r
r̂ +

1

rsinφ

∂f

∂θ
θ̂ +

1

r

∂f

∂z
φ̂ (6.12)

∇.A =
1

r2
∂

∂r
(r2A1) +

1

rsinφ

∂A2

∂θ
+

1

rsinφ

∂

∂φ
(sinφA3) (6.13)

∇×A =
1

r2sinφ

∣∣∣∣∣∣
r̂ rsinφθ̂ rφ̂
∂
∂r

∂
∂θ

∂
∂φ

A1 rsinφA2 rA3

∣∣∣∣∣∣ (6.14)

∇2 =
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

(
∂2

∂φ2

)
(6.15)

6.2.5 Fundamental theorems

The line integral of any gradient field doesn’t depend on path but just on the endpoints. The little
changes df add up (the integral on LHS) to give f(b)− f(a)

ˆ b

a

(∇f).dl = f(b)− f(a) (6.16)

The volume integral of a divergence over any given volumen is equal to the closed surface integral or the
flux of the original vector field over the surface that bounds that volume.

ˆ

V

(∇.A)dτ =

ˆ

S

A.da (6.17)

The surface integral of curl of a vector field is equal to the closed line integral of that field over the
boundary of the surface. Since for a given boundary there can be infinite number of surfaces, it shows
that surface integral of curls is only dependent on the boundary of the surface.

ˆ

S

(∇×A).da =

ˆ
A.dl (6.18)

These operators are usually applied on scalar (gradient) and vector (divergence, curl) fields. Boldface
notation is used for vector fields. f and g are scalar fields and k is just a scalar number

6.2.6 First derivatives

• Sum rules
∇(f + g) = ∇f +∇g (6.19)

∇.(A + B) = (∇.A) + (∇.B) (6.20)

∇× (A + B) = (∇×A) + (∇×B) (6.21)

• Multiplying by a constant rules
∇(kf) = k∇f (6.22)

∇.(kA) = k(∇.A) (6.23)

∇× (kA) = k(∇×A) (6.24)
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Chapter 7

Coordinate Systems

7.1 Cartesian coordinates

Straightforward and easy to understand formulas for all things.

• Point P(x,y,z)

where x, y and z denotes the distances along the x,y and z axes respectively.
The position vector of any point P is given by OP = xx̂ + yŷ + zẑ where the unit vectors are x̂,
ŷ and ẑ that are fixed in magnitude( = 1) and direction also. So in any problem with changing
position/displacement vector, their time derivative must be zero

• Distance Formula

Between two points P (x1, y1, z1) and Q(x2, y2, z2) is:

PQ =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 (7.1)

• Equation of plane with unit normal vector n̂ and a given point on plane with position vector r′:

(r− r′).n̂ = 0 (7.2)

• In component form:
px+ qy + sz = d n̂ = (p, q, s) r.n̂ = d (7.3)

where d = perpendicular distance of plane from origin

• In intercept form:
x

a
+
y

b
+
z

c
= 1 (7.4)

• Relation b/w unit normal and intercepts:

n̂ ∝ î

a
+
ĵ

b
+
k̂

c
(7.5)

• Angle between two planes: l1x+m1y + n1z = d1 and l2x+m2y + n2z = d2 is:

cos θ =
l1l2 +m1m2 + n1n2√

l21 +m2
1 + n21

√
l22 +m2

2 + n22
(7.6)

• Laplacian

∇.(∇f) =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
(7.7)

• Laplacian of a vector
∇2v ≡ (∇2vx)x̂+ (∇2vy)ŷ + (∇2vz)ẑ (7.8)
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3D spherical polar
Line element:

ds2 = dr2 + r2dθ2 + r2 sin2 θdφ2 (7.21)

Volume element:
dV = r2 sin θdφdθdr (7.22)

Cylindrical
Line element:

ds2 = dρ2 + ρ2dφ2 + dz2 (7.23)

Volume element:
dV = ρdφdρdz (7.24)

7.4 Coordinate transformations and unit vectors
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12.2 Fourier integral and transforms

Fourier cosine integral which applies to an even function f(x)

A(w) =
2

π

ˆ ∞
0

f(x) cos wx dx f(x) =

ˆ ∞
0

A(w) cos wx dw (12.6)

Fourier sine integral which applies to an odd function f(x)

B(w) =
2

π

ˆ ∞
0

f(x) sin wx dx f(x) =

ˆ ∞
0

B(w) sin wx dw (12.7)

For a general function f(x), we have representation in terms of its fourier integral. Here the series of eq.
11.1 transforms to an integral as we take L→∞

f(x) =

ˆ ∞
0

[A(w) cos wx+B(w) sin wx]dw (12.8)

A(w) =
1

π

ˆ ∞
−∞

f(v) cos wv dv, B(w) =
1

π

ˆ ∞
−∞

f(v) sin wv dv (12.9)

Writing in complex and doing few tricks we get:

f̂(k) =
1√
2π

ˆ ∞
−∞

f(x)e−ι̇kxdx (12.10)

f(x) =
1√
2π

ˆ ∞
−∞

f̂(k)eι̇kxdk (12.11)

12.2.1 Fourier sine and cosine transforms

f̂s(k) =

√
2

π

ˆ ∞
0

f(x) sin kx dx (12.12)

f(x) =

√
2

π

ˆ ∞
0

f̂s(k) sin kx dk (12.13)

f̂c(k) =

√
2

π

ˆ ∞
0

f(x) cos kx dx (12.14)

f(x) =

√
2

π

ˆ ∞
0

f̂c(k) cos kx dk (12.15)

Properties

Fs{f ′(x)} = −kFc{f(x)} (12.16)

Fc{f ′(x)} = kFs{f(x)} −
√

2

π
f(0) (12.17)

Fc{f ′′(x)} = −k2Fc{f(x)} −
√

2

π
f ′(0) (12.18)

Fs{f ′′(x)} = −k2Fs{f(x)}+

√
2

π
kf(0) (12.19)

d

dk
Fs(k) = Fc{xf(x)} (12.20)

d

dk
Fc(k) = −Fs{xf(x)} (12.21)
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13.1.3 Poisson distribution

This distribution is actually a discrete distribution cause the random variable is discrete. But that
random variable is spread over a continuum. Like the number of calls that we will receive over some
particular time interval.

Px(t) =
(λt)x

x!
e−λt (13.22)

This is the probability of receiving x number of calls in a time period of t given that λ is the average
number of calls per unit time.
Mean and variance are both λ

13.1.4 Gaussian distribution

Many random variables occuring in physical sciences and others follow this distribution exactly or ap-
proximately.
The probability density function is:

f(x) =
1

σ
√

2π
exp

[
− 1

2

(
x− µ
σ

)2]
(13.23)

Mean and variance can be changed by shift of origin and scaling. Then with standard variable Z =
(X − µ)/σ

φ(z) =
1√
2π
exp

(
− z2/2

)
(13.24)

The cumulative probability function cant be solved analytically but is tabulated as Φ(z) for different z
values.

F (x) = Φ

(
x− µ
σ

)
(13.25)

Pr(a < X ≤ b) = Φ

(
b− µ
σ

)
− Φ

(
a− µ
σ

)
(13.26)

13.2 Random walk

• Simplest random walk: Walk unit length steps by flipping a coin. If head comes move forward, tail
comes move backwards.

• Parameters: N = total number of steps taken. l = length of each step. n = the integer (if l = 1)
where you landed at the end.

• Pattern on analysis probabilities of different possible ns when N changes.

• Thus, the coefficients are binomial

• If number of heads = nforward and tails = nbackward get fixed then final position is fixed n =
nforward − nbackward.
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