(v) \Rightarrow (iv) Assume that $||F(x)|| \le \alpha ||x||$, $\forall x \in X$. Given $\epsilon > 0$, we choose $\delta = \frac{\epsilon}{\alpha}$, so that

$$x, y \in X$$
 with $||x - y|| < \delta \Rightarrow ||F(x) - F(y)|| = ||F(x - y)|| \le \alpha ||x - y|| < \alpha \delta = \alpha \frac{\epsilon}{\alpha} = \epsilon$.

Therefore, F is uniformly continuous on X.

- (iv) \Rightarrow (iii) Clearly, F is uniformly continuous on $X \Rightarrow F$ is continuous on X.
- (iii) \Rightarrow (ii) Clearly, F is continuous on $X \Rightarrow F$ is continuous at 0.
- (ii) \Rightarrow (i) Assume that F is continuous at 0. For $\epsilon = 1$, there exists $\delta > 0$ such that $F(U(0, \delta)) \subset U(0, 1)$. If we take $r = \frac{\delta}{2}$, then $\overline{U}(0,r) \subset U(0,\delta)$ and hence F is bounded on $\overline{U}(0,r)$.
- (iii) \Rightarrow (vi) Assume that F is continuous on X. Since $Z(F) = F^{-1}(\{0\})$ and $\{0\}$ is closed in Y, we get that Z(F) is closed in X. Using (v), there exists $\alpha > 0$ such that $||F(x)|| \leq \alpha ||x||, \forall x \in X$. For arbitrary $x \in X$ and arbitrary $z \in Z(F)$, we have

$$\|\tilde{F}(x+Z(F))\| = \|\tilde{F}(x+z+Z(F))\| = \|F(x+z)\| \le \alpha \|x+z\|.$$

$$\frac{1}{\alpha} \|\tilde{F}(x + Z(F))\| \le \inf\{ \|x + z\| : z \in Z(F)\} - (2\pi) \|$$

 $\frac{1}{\alpha}\|\tilde{F}(x+Z(F))\| \leq \inf\{\|x+z\|: z \in Z(F)\} = \max\{Z(F)\}\|.$ Therefore, using (v), we get that \tilde{E} is continue. Assume that Z(F) is closed and the form $\tilde{F}(x)$, $\forall x \in Y$ (vi) \Rightarrow (iii) Assume that Z(F) is closed and the linear map $\tilde{F}: X/Z(F)$ OY defined $F(x), \ \forall x \in X$ is can in laws. Then, using (x), there exists $\alpha > 0$ such that

$$\|\tilde{F}(x+Z(F))\| \le \alpha \| x+Z(F)\|, \ \forall x \in X.$$

Therefore, using $|||x + Z(F)||| \le ||x||$, we get

$$||F(x)|| = ||\tilde{F}(x + Z(F))|| < \alpha |||x + Z(F)||| < \alpha ||x||, \ \forall x \in X.$$

Hence the theorem follows.

Definition. A function $f: X \to Y$ is a homeomorphism if f is one-to-one, f is continuous, and $f^{-1}: f(X) \to X$ is continuous.

Corollary. Let $F: X \to Y$ be a linear transformation.

- (i) F is a homeomorphism iff there exist $\alpha > 0$ and $\beta > 0$ such that $\beta ||x|| \le ||F(x)|| \le ||F(x)||$ $\alpha ||x||, \ \forall x \in X.$
 - (ii) If F is a homeomorphism from X onto Y, then X is complete iff Y is complete.
- (b) Let X and Y be normed spaces with dimension of X is n, for some $n \in \mathbb{N}$.
 - (i) Every bijective linear map from X to Y is a homeomorphism.
 - (ii) All norms on X are equivalent.