o (1, 0)

(0, -1)

Ordered Pair : The combination of an input and output is called an ordered pair.

input output

So in above example orderd pairs are (0, 1), (-3, -2), (1, 2) etc., which satisfy the function:

1.2 **Graph of a Function**

It is the pictorial representation of a function. It is formed by plotting ordered

pairs that satisfy function.

Let y = f(x) = x - 1. Graph of y = f(x) is shown :

y = f(x) is a linear polynomial whose graph is a straight line.

A unique line passes through two given points. So to draw the graph of linear polynomials we needed to plot only two ordered pairs and join them. Note :

Illustrating the Concept:

quare of x. The twea 1. Suppose it is given that

sourticle starting from rest depends on time t. niformly velera fi If acceleration is 2 m/s, we can write, velocity (v) as a function of t. i.e v(t) = 0 + 2t { Using v = u + at }

1.3 Intervals and Notations

To express values a variable can take, we use following notations.

(i) Open interval :

> If x can take values which lie strictly between a and b then we can write a < x < bor $x \in (a, b)$

Closed interval : (ii)

> If x can take values which lie strictly between a and b or x can be equal to a or x can be equal to b, then we can write

 $a \leq x \leq b$ $x \in [a, b]$ or

(iii) Half-open interval:

If only one end point is included for values of x, then the interval is called as half-open interval.

 $a < x \leq b$ or $x \in (a, b]$

 $y = A \sin x$

► X

A

-A

(iv)	$odd \div odd = even$
---------------	-----------------------

- if $f(x) + f(-x) = 0 \implies f$ is odd function **(i)**
 - **(ii)** if $f(x) - f(-x) = 0 \implies f$ is even function
- The square of an even or an odd function is always an even function. **(f)**

2.4 **Periodic function :**

(e)

A function f(x) is said to be periodic function of x, if there exists a positive real number T such that f(x+T)=f(x).

The smallest value of T is called the period of the function.

The positive T should be independent of x for f(x) to be periodic. In case T is not independent of x, f(x)Note : is not a periodic function.

Definition (Graphically)

A function is said to be periodic if its graph repeats itself after a fixed interval and the vidth of that interval is ale.co.l called its period.

For example :

Graph of $f(x) = A \sin x$ repeats after an in ÷ Thus, $f(x) = A \sin x$ is pair vith period -π 0 π 2π

Star	ndard Pisk Con Perior	IC ELOTERS
r	Function	Period
1.	$\sin^n x$, $\cos^n x$	π , If <i>n</i> is even
	$\sec^n x$, $\csc^n x$	2π , If <i>n</i> is odd or fraction
2.	$\tan^n x$, $\cot^n x$	π , <i>n</i> is even or odd
3.	sinx , cosx	π
	tan x , cot x	π
	sec x , cosec x	π
4.	$x-[x] = \{x\}$	1
5.	\sqrt{x}, x^2, x^3+5 etc.	These function are not periodic

Properties of Periodic Function

- If f(x) has period T, then **(i)**
 - cf(x) has also period T **(a)**
 - f(x+c) is periodic with period T **(b)**

Function - A

Mahayodha Academy

 $-\pi$ 0

0

 $y = A \tan x$

 $-\pi/2$

 $\pi/2$

 $3\pi/2$

 $y = A \cos x$

 2π

Continuity:

The graph of $y = A \sin(mx)$ and $y = A \cos(mx)$ is continuous

(*i.e.* no break in the curve) every where.

The graph of $y = A \tan(mx)$ is discontinuous

(*i.e.* break in the curve) at $x = (2n+1) \frac{\pi}{2m}$

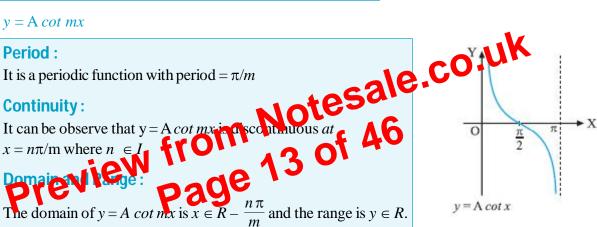
Domain and Range :

The Domain of $y = A \sin(mx)$ and $y = A \cos(mx)$ is $x \in R$ and Range is $y \in [-A, A]$.

The Domain of $y = A \tan(mx)$ is

$$x \in R - (2n+1) \frac{\pi}{2m}$$
 and Range is $y \in R$

(iv) $y = A \cot mx$



y = A sec mx**(v)**

> **Period**: It is a periodic function with period = $2\pi/m$.

Continuity:

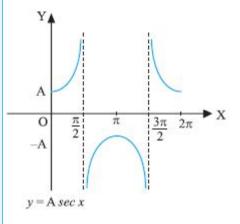
It can be observe that $y = A \sec mx$ is

discontinuous at $x = (2n + 1)\pi/2m$, $n \in I$

Domain and Range :

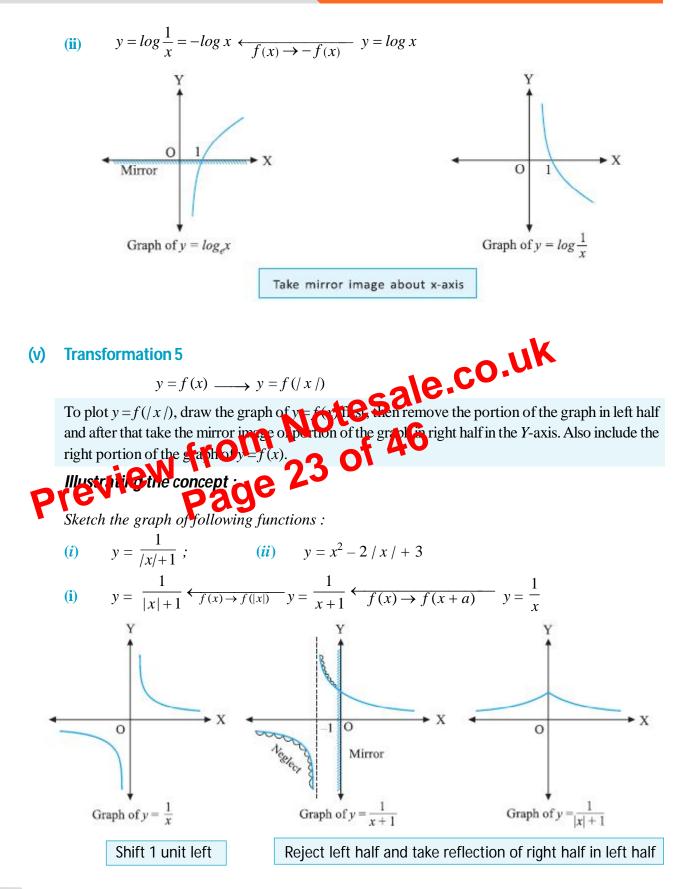
The domain of $y = A \sec mx$

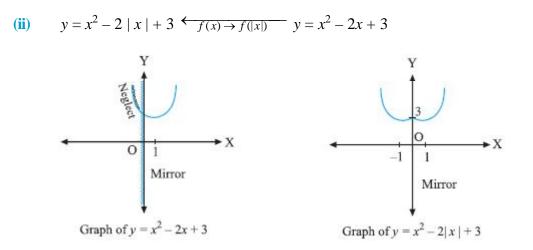
is $x \in R - (2n+1)\frac{\pi}{2m}$ and the Range is $y \in (-\infty, -A] \cup [A, \infty)$.



Mahayodha Academy

Function - A





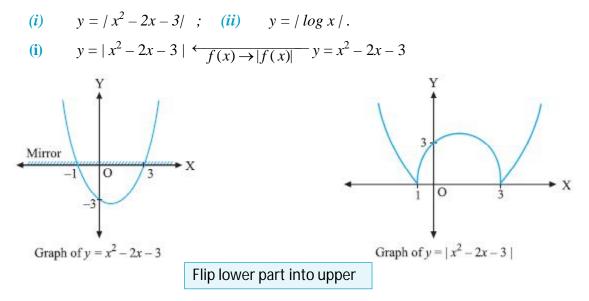
Reject left half and take reflection of right half in left half

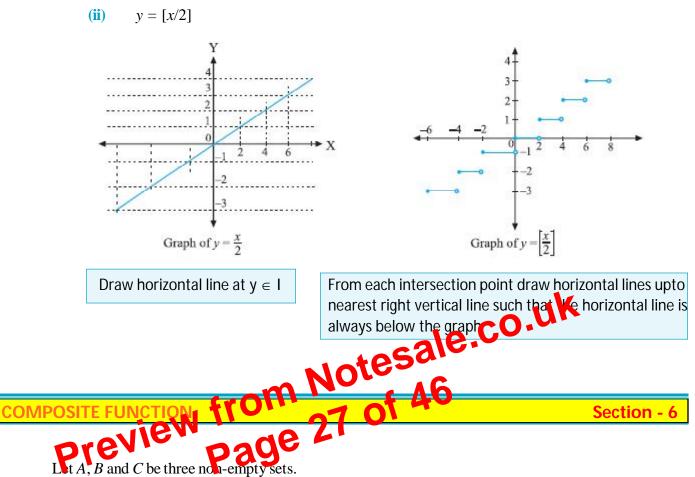
(vi) Transformation 6

And the $y = f(x) \longrightarrow y = |f(x)|$ To plot y = |f(x)|, draw the curve y = yTo plot y = |f(x)|, draw the curve y = y(x), then take the mirror image of the lower portion of the curve (the curve below x-axis) in x-axis and there eject the lower part (or flip lower part into upper) Also inclue in upper protion of the curve y = f(x).

Illustrating the concept :

Draw the graph of the following curves :





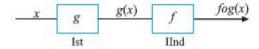
Let $f: A \to B$ and $g: B \to C$ be two functions then $gof: A \to C$. This function is called **Composite** Function.

Note :

(i)	fog(x) = f(g(x));	(ii)	fof(x) = f(f(x));
(iii)	gog(x) = g(g(x));	(iv)	gof(x) = g(f(x)).

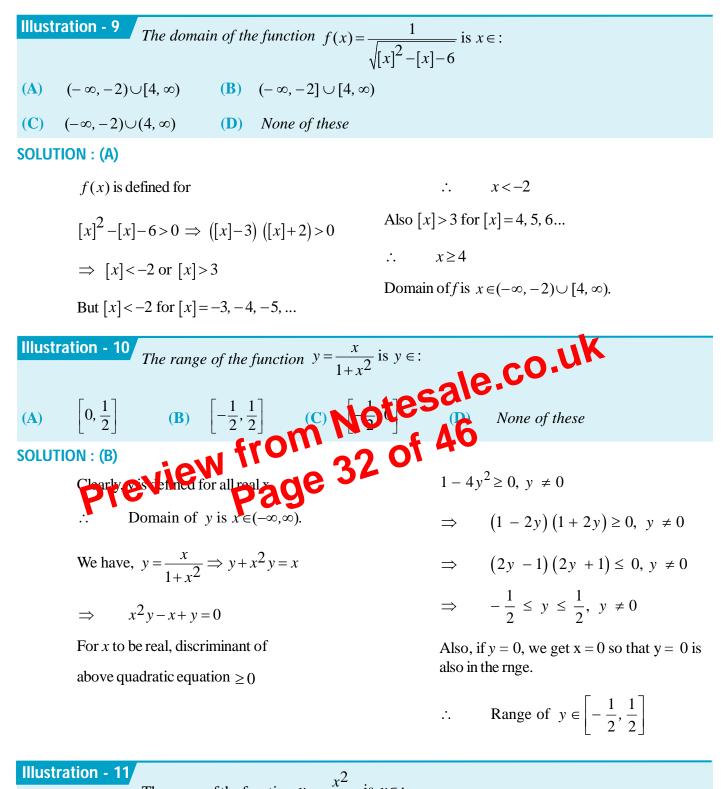
Explanation:

(i) To undrestand the concept of composite function consider fog(x):



In the above diagram, for Ist block, 'x' is the independent variable and corresponding g(x) is the dependent variable. But for II^{nd} block, g(x) *i.e.* the dependent variable of Ist block is independent variable corresponding fog(x) is the dependent variable.

Mahayodha Academy



The range of the function $y = \frac{1}{1+x^2}$ is $y \in \mathbb{N}$									
((A)	[0, 1)	(B)	(0, 1)	(C)	[0, 1]	(D)	None of these	