Abel means of the Fourier series of f:

Af(0) = )+ D (f(m)e™ + f(=n)e ™) = 3 1" f(n)e™”.
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Answering question 4

Let f be a Riemman integrable function on S

1. If f is continuous at # and its Fourier series converges at 6 then it
converges to f(0).
Proof: By Abel’s theorem, if s,(0) — L then A,f(#) — L. But

A f(0) = f(0). O

2. If f is continuous at # and f(n) =0 for all n € Z, then f(f) =
Corollary: If f, g have the same Fourier coefficients and are both con-
tinuous at @ then f(6) = g(0).

3. If f is continuous at 6 and 3 |f(n)| < oo, then its Fourier series at 0
does not converge to f(0).
By M -test: Uniformly to f if f € C(S). N



