Hence with = Uyc510Q we have

||Z Thallyena S lollbim Y, 1Q1 S leollpimillf I

Qe
Therefore
{Tf > 1H < 1]+ {D Thg > 1/2} N[ +|{Tg > 1/2}]
Q
SHFIL +1D ] Thollygaygy + 1Tl
Q

S @+ lwlpimdllf 1l

where we have used [g][3 < I|gll1lIglloo S [I£ 1. O

5.2 Cotlar’s inequality

Define the maximally truncated operator

= s [ KO0y

£>0,|x—x'|<e/2

This maximal truncation is usually considered without the supremum in x’ (i.e. with x’ = x), but the
above version is more convenient for us.

Lemma 5.5 (Cotlar’s inequality).
Tyf Sas (ITl2op2 + ll@llpin))Mf +MsTf. (5.6)
Here Mgf = (M(f°)Y/?, 0 < & <1, where M is the usual Hardy-Littl VOOd E@ZMIOTI

In particular T; has weak type (1, 1). a
Proof. For x’,x" € B(x, £/2) write NO‘GS
| ke, y)f(y)dyq\{ X o). (y)@{& /2r I a2 ) )y
B(x’,e)¢ \ B(x%¢e)°\B(x, ZE)C
Py eN P ag = [ G, 3) = K Doy F M.

The first term is estimated using the kernel bound by Cx M f (x). The last term is estimated by

2_k
IK(x", y)=K G, IIf (Idy Sa Z/ G

/ 22 )1 r )y S leollomMf ().
>0V 2ke<|x—y|<2kt1e o0V 2ke<|x—y|<2kt1e (2%¢)

The middle term equals
T(f 1p(r 260 )(X”) = T(f)x") = T(f 1,20 (x ),

where we have used that T is associated to K and linearity of T. In both terms we take the L® average
over x” € B := B(x, £/2). The contribution of the former term is then clearly bounded by MyT f (x).
The contribution of the latter term is bounded by

(][lT(14Bf)|5)1/6 S IBITUIT(Lap gy < NTlgiopieo BIT s f I S ITllopieMf (%),
B

and we conclude using Lemma 5.4. O
Exercise 5.7. Replace MsTf in (5.6) by 4, ,,T f, where
A,.f (x) = sup(f 19)"(AlQI)
xeqQ

and f* denotes the non-increasing rearrangement of f .
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5.3 Marcinkiewicz interpolation theorem, L>* version

We need the following version of the Marcinkiewicz interpolation theorem in which the conclusion is
a bound on a weak LP space.

Theorem 5.8. Let T be a quasisubadditive operator and assume T : LPi — LP»»® for j = 0,1 with
1<pyp<p1 <00 Let0< 8O <land1/pg=(1—06)/py+ 6/p;. Then T : LPo>>° — [P6->°,

Proof. Similarly as in the proof of the strong type estimate split f = f( ; + f1 ; with f; ; = f15<s.
Then

{UTFI>n} < UTfoul > n/(2O} +{ITfal > n/(20)}
SOPNTfo 20 oo + 0 PHITFialE

S0 Pllfoally? + 0PI f

<o [ g [ i
IfI>2 If1<A

<n—poZ/ If P +n plz/

& <0 ~2k;x
< ZQ"A)PHG 11l 0+ 177 Z(Z"A)PI*PG 15 o
k>0 k=<0

Since py < pg < p;, both series are geometric and dominated by the k = 0 terms. Hence

UTS1> 0} S 7P AP 7P| f llpg 00 + 17 PHAYPTPOIf [l g co- u\(

Choosing A = 1) we obtain the claim

e.C
{1Tf1>n} &Sa\
ﬂm -‘ 26 0

Corollary 5.9. }[‘aew\&eStor Ms lsé n d’&_LQfor 0<o<1

Proof. w a 5.8 the Har maximal operator M is bounded on LY/%®. Hence

6 Sparse domination of CZ operators

||M5f||1,oo = 1M N/5,00 S 172 M16,00 = 1 Il1,00- O

The fierst proof of sharp weighted estimates for CZ operators was quite complicated [Hyt12]. Many
simplifications have been made since then The two key simplifications were the introduction of sparse
domination by Lerner [Ler13] and a simple algorithm for constructing sparse collections by Lacey
[Lacl5], a streamlined version of which appears in [HRT15]. We have followed [Ler16].

The main example that I am aware of where sharp weighted estimates are useful is the regularity
theory for solutions of the Beltrami equation in [AISO1].

7 A, weights

Let 9 be a dyadic grid (in RY) and M the associated dyadic maximal operator. The associated A,
characteristic is defined by

[wla,, : SUP w(Q)™ M (wlg).
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Consider now the case v = w that corresponds to (7.6). By Lemma 7.3 we obtain
wiMw > A} <292 |{Mw > A}|.
Hence using (7.7) and (7.5) we obtain

00 d

® e—1 d € 2% 1+e
€ AT wi{Mw > AldA < 2% A {Mw > AHdA < —— | (Mw)
Wg W, 1T+e Jq
9d+1
< élQol( Dot = 1Qolw)g'®
- 1+¢
by the choice of ¢. The conclusion follows. O

Corollary 7.8 (Open property). Let 1 < p < co and w € A,. Then [W]Ap N [W]Ap, where p =
p— ﬁ < p and v is the dual weight: w'/Py/?" =1.
Ao

Proof. The exponent p is chosen in such a way that 1+¢ = (p/p’)(p’/p), where ¢ is as in Lemma 7.4
for the weight v. Consider the dual weight # = w™?/P. Then by (7.6) applied to the weight v we

have
(M) = (v')q <215

Hence for every Q € 2 we have
W S W) TP = W) < [wl,, \( O

7.1 Embedding of A, into A, Sa\ C
We call a weight (C4p-)doubling if $ te
bw«z) S 26
for some doubling con é\N “ q all Cme
It is not h@qs tifat A, weigh ng if p < 0o. The case p = oo is more subtle.

ExerciE.S. Find a weight thaEAOo with respect to the standard dyadic filtration but not A (R9).

Exercise 7.10. Find a weight on R that is A, with respect to the three 1/3-shifted dyadic grids but
not A, (R).

To combat these difficulties we define the A, (R?) by
(W] e = Supw(Q) /Q M(wly),

where the supremum is taken over all non-empty axis-parallel cubes in RY.
Lemma 7.11. For every d > 1 there exists C = C(d) such that for every w € A,(RY) we have

RUIWET

Cap(w) < C©

The converse is not true: there exist doubling weights that are not A,,, see [FM74] (a different
version of the A, condition was used there).
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Consider first the case p < 2, so that |[p] =1 and 1/p > 1/p’. Then we estimate this by

= D (Mw@)IWQ)™ Y gwlglal) ¥

F2Q, QSQ;
< [y, w] WD N (1) w@)W@QD™ D (g P 1)
F2Q, QCQ
Using Lemma 8.4
< [v,w]PI®/P"D) Z (V)Qlw(Ql)(W(Ql)_l(v)(lg:p/pllQl|){p}

F2Q,
{p}(p/p",1) 1+(1-p/p"Hp} ¢, \1-1p}
= [v,w] D1l W),
F20Q
< [v,w]@/?"1) Z |Q1|(v)1+(1—p/p’){p}—(p/p’)(l—{p})
<[, 2

F20Q

= [v,w]®PD 3 1Q|(v)g,

F2Q,

and using sparseness of 2
<[v, W](p/p ’1)[1/] v(F).

Consider now the case p > 2, so that 1/p < 1/p’. Then we estimate

= Q""" b » » -1
ST 0 Mgy, W@ Y Il @P}\)\(

F2Q;2-2Qp) QCQ \

< [v,w]P}@p"/P) Mg, -+ (V) Xl |Q|(w)1 p/p){p}
FDQIZ @ N@

2-2Qy,

Using Lemma 8.4 \N _‘( _‘ 26%%1
? v@\tl\vamzl% a@av;}@w@@ DICICIMN N |(W)le Ipyip}

= [v,w]P}LP'/P) Z M, - '(V)QLPJW(Q )(W)Q{p}p /p

F2Q12--2Qy)

/ / 1— (A
< [v,w]P3@P"/p)+Lp'/p) Z (e, "'(V)QLpJ—llQLpJKW)Q[P{Jp}p /p=p'/p
F2Q12:-2Qp)

Using Lemma 8.4 again

/ / 1
< [v, w] PP /PI+LP'/P) Z (M, gy, -11Qp -1 1w )Q {Jp}f Ip=p'/p.
F2Q12:-2Q|,-1

Continuing in this manner we obtain inductively

/ / 1
< [v,w]{P}(l,p /p)+m(1,p’/p) Z (V)Ql (V)Q o leLpJ m|(W) {p}p /p—mp /p
FQQ]Q"'QQLPJ,

For m = |p] — 1 this gives the estimate

/ _ / 1— ryo —1Dp’
< [V,W]{p}(l,p /p)+(lp]-1)(1,p’/p) Z (V)QllQll(W)QLp{Jp—}fi /p=(lp]=1)p’/p
F2Q,
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