
Hence with Ω = ∪Q∈Q10Q we have

‖
∑

Q

T bQ‖L1(Rd\Ω) ® ‖ω‖Dini

∑

Q∈Q
|Q|® ‖ω‖Dini‖ f ‖1

Therefore

|{T f > 1}| ≤ |Ω|+ |{
∑

Q

T bQ > 1/2} ∩Ωc|+ |{T g > 1/2}|

® ‖ f ‖1+ ‖
∑

Q

T bQ‖L1(Rd\Ω)+ ‖T g‖22

® (1+ ‖ω‖Dini)‖ f ‖1,

where we have used ‖g‖22 ≤ ‖g‖1‖g‖∞ ® ‖ f ‖1.

5.2 Cotlar’s inequality

Define the maximally truncated operator

T] f (x) := sup
ε>0,|x−x ′|≤ε/2

ˆ
B(x ′,ε)c

K(x ′, y) f (y)dy.

This maximal truncation is usually considered without the supremum in x ′ (i.e. with x ′ = x), but the
above version is more convenient for us.

Lemma 5.5 (Cotlar’s inequality).

T] f ®d,δ (‖T‖L2→L2 + ‖ω‖Dini)M f +MδT f . (5.6)

Here Mδ f = (M( f δ))1/δ, 0< δ < 1, where M is the usual Hardy–Littlewood maximal function.

In particular T] has weak type (1, 1).

Proof. For x ′, x ′′ ∈ B(x ,ε/2) writeˆ
B(x ′,ε)c

K(x ′, y) f (y)dy =
ˆ

B(x ′,ε)c\B(x ,2ε)c
K(x ′, y) f (y)dy +

ˆ
K(x ′′, y)( f 1B(x ,2ε)c )(y)dy

−
ˆ
(K(x ′′, y)− K(x ′, y))1B(x ,2ε)c f (y)dy.

The first term is estimated using the kernel bound by CK M f (x). The last term is estimated by
∑

k>0

ˆ
2kε≤|x−y|<2k+1ε

|K(x ′′, y)−K(x ′, y)|| f (y)|dy ®d

∑

k>0

ˆ
2kε≤|x−y|<2k+1ε

ω(2−k)

(2kε)d
| f (y)|dy ® ‖ω‖DiniM f (x).

The middle term equals

T ( f 1B(x ,2ε)c )(x
′′) = T ( f )(x ′′)− T ( f 1B(x ,2ε))(x

′′),

where we have used that T is associated to K and linearity of T . In both terms we take the Lδ average
over x ′′ ∈ B := B(x ,ε/2). The contribution of the former term is then clearly bounded by MδT f (x).
The contribution of the latter term is bounded by

(
 

B
|T (14B f )|δ)1/δ ® |B|−1‖T (14B f )‖L1,∞(B) ≤ ‖T‖L1→L1,∞ |B|−1‖14B f ‖L1 ® ‖T‖L1→L1,∞M f (x),

and we conclude using Lemma 5.4.

Exercise 5.7. Replace MδT f in (5.6) byM1/2T f , where

Mλ f (x) = sup
x∈Q
( f 1Q)

∗(λ|Q|)

and f ∗ denotes the non-increasing rearrangement of f .
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5.3 Marcinkiewicz interpolation theorem, Lp,∞ version

We need the following version of the Marcinkiewicz interpolation theorem in which the conclusion is
a bound on a weak Lp space.

Theorem 5.8. Let T be a quasisubadditive operator and assume T : Lp j → Lp j ,∞ for j = 0,1 with
1≤ p0 < p1 ≤∞. Let 0< θ < 1 and 1/pθ = (1− θ)/p0+ θ/p1. Then T : Lpθ ,∞→ Lpθ ,∞.

Proof. Similarly as in the proof of the strong type estimate split f = f0,λ+ f1,λ with f1,λ = f 1| f |≤λ.
Then

{|T f |> η} ≤ {|T f0,λ|> η/(2C)}+ {|T f1,λ|> η/(2C)}
® η−p0‖T f0,λ‖

p0
p0,∞+η

−p1‖T f1,λ‖
p1
p1,∞

® η−p0‖ f0,λ‖
p0
p0
+η−p1‖ f1,λ‖

p1
p1

≤ η−p0

ˆ
| f |>λ
| f |p0 +η−p1

ˆ
| f |≤λ
| f |p1

≤ η−p0

∑

k≥0

ˆ
| f |∼2kλ

| f |p0 +η−p1

∑

k≤0

ˆ
| f |∼2kλ

| f |p1

≤ η−p0

∑

k≥0

(2kλ)p0−pθ ‖ f ‖pθ ,∞+η
−p1

∑

k≤0

(2kλ)p1−pθ ‖ f ‖pθ ,∞.

Since p0 < pθ < p1, both series are geometric and dominated by the k = 0 terms. Hence

{|T f |> η}® η−p0(λ)p0−pθ ‖ f ‖pθ ,∞+η
−p1(λ)p1−pθ ‖ f ‖pθ ,∞.

Choosing λ= η we obtain the claim

{|T f |> η}® η−pθ ‖ f ‖pθ ,∞.

Corollary 5.9. The maximal operator Mδ is bounded on L1,∞ for 0< δ < 1.

Proof. By Theorem 5.8 the Hardy-Littlewood maximal operator M is bounded on L1/δ,∞. Hence

‖Mδ f ‖1,∞ = ‖M( f δ)‖1/δ,∞ ® ‖ f δ‖1/δ,∞ = ‖ f ‖1,∞.

6 Sparse domination of CZ operators

The fierst proof of sharp weighted estimates for CZ operators was quite complicated [Hyt12]. Many
simplifications have been made since then The two key simplifications were the introduction of sparse
domination by Lerner [Ler13] and a simple algorithm for constructing sparse collections by Lacey
[Lac15], a streamlined version of which appears in [HRT15]. We have followed [Ler16].

The main example that I am aware of where sharp weighted estimates are useful is the regularity
theory for solutions of the Beltrami equation in [AIS01].

7 A∞ weights

Let D be a dyadic grid (in Rd) and M the associated dyadic maximal operator. The associated A∞
characteristic is defined by

[w]A∞ := sup
Q∈D

w(Q)−1
ˆ

Q
M(w1Q).

11
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Consider now the case v = w that corresponds to (7.6). By Lemma 7.3 we obtain

w{Mw > λ} ≤ 2dλ|{Mw > λ}|.

Hence using (7.7) and (7.5) we obtain

ε

ˆ ∞
(w)Q0

λε−1w{Mw > λ}dλ≤ 2dε

ˆ ∞
(w)Q0

λε|{Mw > λ}|dλ≤
2dε

1+ ε

ˆ
Q0

(Mw)1+ε

≤
2d+1[w]A∞ε

1+ ε
|Q0|(w)1+εQ0

= |Q0|(w)1+εQ0

by the choice of ε. The conclusion follows.

Corollary 7.8 (Open property). Let 1 < p < ∞ and w ∈ Ap. Then [w]Ap̃
® [w]Ap

, where p̃ =

p− p−1
2d+1[v]A∞

< p and v is the dual weight: w1/pv1/p′ ≡ 1.

Proof. The exponent p̃ is chosen in such a way that 1+ ε = (p/p′)(p̃′/p̃), where ε is as in Lemma 7.4
for the weight v. Consider the dual weight ṽ = w−p̃′/p̃. Then by (7.6) applied to the weight v we
have

(ṽ)Q = (v
1+ε)Q ≤ 2(v)1+εQ .

Hence for every Q ∈ D we have

(w)Q(ṽ)
p̃/p̃′

Q ® (w)Q(v)
(1+ε)p̃/p̃′

Q = (w)Q(v)
p/p′

Q ≤ [w]Ap
.

7.1 Embedding of A∞ into Ap

We call a weight (Cd b-)doubling if
w(2Q)≤ Cd bw(Q)

for some doubling constant Cd b <∞ and all cubes Q ⊂ Rd .
It is not hard to show that Ap weights are doubling if p <∞. The case p =∞ is more subtle.

Exercise 7.9. Find a weight that is A∞ with respect to the standard dyadic filtration but not A∞(Rd).

Exercise 7.10. Find a weight on R that is A∞ with respect to the three 1/3-shifted dyadic grids but
not A∞(R).

To combat these difficulties we define the A∞(Rd) by

[w]A∞(Rd ) = sup
Q

w(Q)−1
ˆ

Q
M(w1Q),

where the supremum is taken over all non-empty axis-parallel cubes in Rd .

Lemma 7.11. For every d ≥ 1 there exists C = C(d) such that for every w ∈ A∞(Rd) we have

Cd b(w)≤ CC
[w]

A∞(Rd )
.

The converse is not true: there exist doubling weights that are not A∞, see [FM74] (a different
version of the A∞ condition was used there).
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Consider first the case p < 2, so that bpc= 1 and 1/p > 1/p′. Then we estimate this by

=
∑

F⊇Q1

(v)Q1
w(Q1)

�

w(Q1)
−1
∑

Q⊆Q1

(v)Q(w)Q|Q|
�{p}

≤ [v, w]{p}(p/p
′,1)
∑

F⊇Q1

(v)Q1
w(Q1)

�

w(Q1)
−1
∑

Q⊆Q1

(v)1−p/p′

Q |Q|
�{p}

Using Lemma 8.4

® [v, w]{p}(p/p
′,1)
∑

F⊇Q1

(v)Q1
w(Q1)

�

w(Q1)
−1(v)1−p/p′

Q1
|Q1|

�{p}

= [v, w]{p}(p/p
′,1)
∑

F⊇Q1

|Q1|(v)
1+(1−p/p′){p}
Q1

(w)1−{p}Q1

≤ [v, w](p/p
′,1)
∑

F⊇Q1

|Q1|(v)
1+(1−p/p′){p}−(p/p′)(1−{p})
Q1

= [v, w](p/p
′,1)
∑

F⊇Q1

|Q1|(v)Q1

and using sparseness of Q
® [v, w](p/p

′,1)[v]A∞ v(F).

Consider now the case p ≥ 2, so that 1/p ≤ 1/p′. Then we estimate

=
∑

F⊇Q1⊇···⊇Qbpc

(v)Q1
· · · (v)Qbpcw(Qbpc)

�

w(Qbpc)
−1
∑

Q⊆Qbpc

|Q|(v)Q(w)Q
�{p}

≤ [v, w]{p}(1,p′/p)
∑

F⊇Q1⊇···⊇Qbpc

(v)Q1
· · · (v)Qbpcw(Qbpc)

�

w(Qbpc)
−1
∑

Q⊆Qbpc

|Q|(w)1−p′/p
Q

�{p}

Using Lemma 8.4

® [v, w]{p}(1,p′/p)
∑

F⊇Q1⊇···⊇Qbpc

(v)Q1
· · · (v)Qbpcw(Qbpc)

�

w(Qbpc)
−1|Qbpc|(w)

1−p′/p
Qbpc

�{p}

= [v, w]{p}(1,p′/p)
∑

F⊇Q1⊇···⊇Qbpc

(v)Q1
· · · (v)Qbpcw(Qbpc)(w)

−{p}p′/p
Qbpc

≤ [v, w]{p}(1,p′/p)+(1,p′/p)
∑

F⊇Q1⊇···⊇Qbpc

(v)Q1
· · · (v)Qbpc−1|Qbpc|(w)

1−{p}p′/p−p′/p
Qbpc

Using Lemma 8.4 again

® [v, w]{p}(1,p′/p)+(1,p′/p)
∑

F⊇Q1⊇···⊇Qbpc−1

(v)Q1
· · · (v)Qbpc−1|Qbpc−1|(w)

1−{p}p′/p−p′/p
Qbpc−1 .

Continuing in this manner we obtain inductively

® [v, w]{p}(1,p′/p)+m(1,p′/p)
∑

F⊇Q1⊇···⊇Qbpc−m

(v)Q1
· · · (v)Qbpc−m|Qbpc−m|(w)

1−{p}p′/p−mp′/p
Qbpc−m .

For m= bpc − 1 this gives the estimate

® [v, w]{p}(1,p′/p)+(bpc−1)(1,p′/p)
∑

F⊇Q1

(v)Q1
|Q1|(w)

1−{p}p′/p−(bpc−1)p′/p
Qbpc−m
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