
2.10. Then, V1V
1−p
2 is again an Ap(X) weight such that

V1V
1−p
2 =

(
mEv1 (mEv2)

1−p
)δ

on E, with the maximal function mE restricted to E as per Definition 2.2. The fact that v1, v2 ∈

Ã1(E) implies that there is a constant C = max{Jv1K1 , Jv2K1} such that vi ≤ mEvi ≤ Cvi, i = 1, 2,
almost everywhere on E (Proposition 2.3). Thus there exist nonnegative functions gi, i = 1, 2, such

that gi, g
−1
i ∈ L∞(X) and gimEvi = vi almost every where on E. Defining g = gδ1g

δ(p−1)
2 we see

that g, g−1 ∈ L∞(X), g > 0, and

g(x)V1(x)V2(x)
1−p =

(
v1(x)v2(x)

1−p
)δ

= v(x)δ = w(x)

for almost every x ∈ E. The weight W = gV1V
1−p
2 is in Ap(X) and satisfies W = w a. e. on E.

Finally, if p = 1, we reproduce the above argument taking v1 as v and discarding the weight
v2. �

3. Balls and chains

The aim of this section is to collect several preparatory results concerning balls in a metric space
with a doubling measure. Our reason to delve into the geometry of Whitney-type balls is that
they can be used to give estimates for Muckenhoupt weights over chains. In particular, Lemma 3.8
is needed to prove Lemma 4.4 in the next section, which in turn is an integral part of Holden’s
argument in [17]. We have found it necessary to provide an explicit proof of Lemma 3.8, as we
could not locate one in the literature.

While most results in this section do not require any additional assumptions, on occasion we need
to assume the existence of geodesics joining every pair of points. To cite an example of geodesic
spaces relevant to partial differential equations, Corollary 8.3.16 in [16] states that a complete,
doubling metric space that supports a Poincaré inequality admits a geodesic metric that is bilipschitz
equivalent to the underlying metric, with constant depending on the doubling constant of the
measure and the data of the Poincaré inequality.

We say that a complete metric space (X, d) is a geodesic space provided that any two points
x, y ∈ X can be joined by a continuous, rectifiable curve γ : [a, b] → X with d(x, y) = ℓ(γ), where
ℓ(γ) denotes the length of γ. A rectifiable curve γ : [a, b] → X satisfying ℓ(γ) = d(γ(a), γ(b)) is
called a geodesic on X. Note that for a general rectifiable curve γ : [a, b] → X, we always have the
inequality ℓ(γ) ≥ d(γ(a), γ(b)).

We will invoke the following well-known property of geodesics: if [a′, b′] ⊂ [a, b], the subarc γ|[a′,b′]
of the geodesic γ : [a, b] → X is a geodesic too. Hence, for any three points γ(ti) on the geodesic γ
such that a ≤ t0 < t1 < t2 ≤ b, the triangle inequality for d becomes an equality:

d(γ(t0), γ(t2)) = d(γ(t0), γ(t1)) + d(γ(t1), γ(t2)).

Slightly abusing notation, we write γ|[x1,x2]
to mean γ|[t1,t2]

whenever γ(ti) = xi, i = 1, 2.

Throughout the rest of this section, we will assume that (X, d, µ) is a complete metric measure
space such that µ satisfies the doubling condition (2). Also, when using the notation A ≈ B or
A . B for any two real numbers A,B, we understand that the constants involved may depend on
the doubling constant Cd(µ).

We begin by showing two lemmas in metric geometry for future reference. In the first one, the
measure does not play any role.

Lemma 3.1. Let X be a geodesic space, and B, B′ any two balls in X. Assume that rad(B) .
rad(B′) and that B′ contains the center of B. Then there exists a ball B′′ ⊂ B ∩B′ with rad(B′′) ≈
rad(B).
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If E1, E2 are subsets of D, we define kD(E1, E2) = infx1∈E1, x2∈E2 kD(x1, x2). As there is no risk
of ambiguity, we will leave out the subscript D in the following.

It is easy to see that the quasihyperbolic diameter of any Whitney-like ball is bounded, which is
the content of the following lemma.

Lemma 3.7. Assume further that X is a geodesic space and let D ⊂ X be a domain. If B ⊂ D is

a ball such that d(B, ∂D) ≈ rad(B), then k(x, y) ≤ C for any two points x, y ∈ B.

Proof. Let z denote the center of B, and let γ ⊂ B be a rectifiable curve connecting z and x such
that ℓ(γ|[z,x]) = d(z, x). Then

k(z, x) ≤

∫

γ|[z,x]

ds

d(y, ∂D)
.

∫

γ|[z,x]

ds

rad(B)
=

ℓ(γ|[z,x])

rad(B)
≤ C.

Similarly we obtain k(z, y) ≤ C, and the triangle inequality implies k(x, y) ≤ C. �

The next lemma establishes an equivalence between shortest Whitney chains and quasihyperbolic
distance. It is essentially contained in the proof of Lemma 9 in [29]. For a detailed proof of the
corresponding lemma in Rn, see Proposition 6.1 in [18]. Notice that if the space X is geodesic and
D ⊂ X is a proper subset, the distance functions d(·, ∂D) and d(·,X \D) coincide over D. We are
then allowed to use Lemmas 3.3 and 3.4 with the distance d(·, ∂D) instead of d(·,X \D).

Lemma 3.8. Assume further that X is a geodesic space. Let D ⊂ X be a domain and Bi =

B(xi, ri) ∈ W(D), i = 1, 2. Then k̃(B1, B2) ≈ k(x1, x2).

Proof. Let M = k̃(B1, B2) be the length of the shortest Whitney chain joining B1 to B2. In the
case x1 = x2, both quantities amount to zero and there is nothing to prove. Suppose now x1 and

x2 are distinct points. First, we prove k̃(B1, B2) . k(x1, x2). Denote by γ the quasihyperbolic
geodesic joining x1 and x2, and take z to be an arbitrary point on γ. Of all the Whitney balls
containing z, we choose the one with the smallest radius, say, B = B(x, r). Consider the ball Bz

centered at z and with radius r. It is clear that Bz ⊂ 2B, and thus Bz is contained in D with
d(Bz, ∂D) ≥ d(2B, ∂D) ≥ r by virtue of Lemma 3.3 (ii). Also, by the properties of the Whitney
decomposition (Lemma 3.3 (ii)), we have

d(Bz, ∂D) ≤ d(z, ∂D) ≤ d(B, ∂D) + diam(B) ≤ 8r,

and we conclude that d(Bz, ∂D) ≈ rad(Bz) = r.
Let γz be a subarc of γ∩Bz passing through z and of maximal length. We claim that ℓ(γz) ≥ C1r

at all times. Whenever γ is not entirely contained in Bz, by the continuity of γ, there exists a
point q ∈ γz such that d(q, z) > r/2. Then we have ℓ(γz) ≥ d(q, z) = r/2. In the case γ ⊂ Bz,
by the properties of the Whitney decomposition there exists a constant 0 < c < 1 such that
ℓ(γz) = ℓ(γ) ≥ d(x1, x2) ≥ cr1. Furthermore, Lemma 3.4 (i) gives r ≈ r1 and consequently
ℓ(γz) ≥ C1r. Recalling that γz ⊂ Bz and d(z, ∂D) ≤ 8r, in all cases it holds that

∫

γz

dl

d(y, ∂D)
≥

ℓ(γz)

r + d(z, ∂D)
≥

C1r

9r
≥ C2. (12)

Next, we cover the geodesic γ by balls {Bzi}i, with the points {zi}i ⊂ γ chosen so that every point
is contained in at most two balls Bzi . Among these collections we choose the one with the smallest
cardinality, say m = #{Bzi}. For any z ∈ γ, Lemma 3.4 (ii) shows that there are at most C Whitney
balls intersecting Bz. Now let M1 be the minimal number of Whitney balls needed to cover

⋃
i Bzi ,

and denote this collection by F . Clearly M1 ≥ M , because M was the length of the shortest chain
joining B1 and B2. Also, we have that #F = M1 and, by minimality, for every B ∈ F there is at
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Also, by Lemma 3.8, we have k(z′1, z
′
2) ≈ k̃(B′

1, B
′
2) and thus k̃(B′

1, B
′
2) . C1. With these remarks,

Lemma 4.2 (ii) allows us to estimate

1

µ(B1)

∫

B1

w dµ .

(
µ(B1)

µ(B′′
1 )

)p−1 1

µ(B′′
1 )

∫

B′′

1

w dµ (16)

.
µ(B′

1)

µ(B′′
1 )

1

µ(B′
1)

∫

B′

1

w dµ

.
1

µ(B′
1)

∫

B′

1

w dµ (17)

.
1

µ(B′
2)

∫

B′

2

w dµ (18)

.

(
µ(B′

2)

µ(B′′
2 )

)p−1 1

µ(B′′
2 )

∫

B′′

2

w dµ (19)

.
1

µ(B′′
2 )

∫

B′′

2

w dµ (20)

.
1

µ(B2)

∫

B2

w dµ.

Line (16) follows from the fact that the measure w dµ is doubling, while (18) and (19) are Lemma
4.2 (iv) and (ii), respectively. On lines (17) and (20) we used the fact that µ(B′′

i ) ≈ µ(B′
i) ≈ µ(Bi).

Finally, if
(
B′

1 = B0, . . . , BN = B′
2

)
is the shortest Whitney chain connecting B′

1 and B′
2, we

have that N . C by the previous arguments. Since each pair of consecutive balls (Bj−1, Bj) in the
chain has nonempty intersection, we have rad(Bj−1) ≈ rad(Bj) by Lemma 3.3(iv) and therefore
rad(B0) ≈ rad(Bj) ≈ rad(BN ) for every for every j = 1, . . . , N, because N . C. Moreover, if
pj ∈ Bj−1 ∩Bj, the triangle inequality gives

d(p0, pN ) ≤
N∑

j=1

d(pj−1, pj) ≤
N∑

j=1

2 rad(Bj−1) . rad(BN ).

It follows from Lemma 3.2 that µ(B′
1) ≈ µ(B′

2), which in turn implies µ(B1) ≈ µ(B2). We conclude
that ∫

B1

w dµ .

∫

B2

w dµ

and, swapping the roles of B1 and B2, the inequality in the other direction. �
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