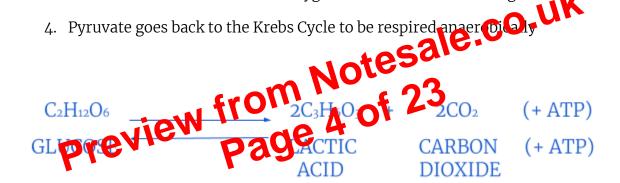
7A: Anaerobic Respiration in Mammals:

1. LACTATE FERMENTATION:


- Pyruvate from glycolysis is converted to *lactate* & *H+ ions* with the help of **NADH**
 - A small amount of **ATP** is produced

2. PROCESSING LACTATE:

- Lactate is oxidised back to *pyruvate* when in the liver
 - It moves through the blood
 - Causes pH to fall
 - Muscle tissue becomes *acidic*

3. OXIDATION OF LACTATE:

- Lactate is oxidised back to pyruvate
 - Needs extra oxygen
 - Causes an oxygen debt due to lactate being *toxic*

7A: Anaerobic Respiration in Plants & Fungi:

- Yeast respires anaerobically to produce **CO**₂ + **ethanol** as waste products
- Plants respire anaerobically in root cells & waterlogged soil
 - Waste products are also **CO**₂ + **ethanol**

7A: Ultrafiltration: A Passive Process:

- 1. The blood in the glomerulus (in the Bowman's capsule) is at high pressure
 - The *afferent arteriole* (entering the glomerulus) is wider than the *efferent arteriole* (leaving the glomerulus)
 - This increases the blood pressure of the blood flowing through the glomerulus
- 2. The high pressure forces small molecules in the blood out of the capillaries of the glomerulus & into the Bowman's capsule
 - Results in a fluid called *qlomerular filtrate*
- 3. Large molecules such as proteins remain in the blood & don't pass into the filtrate
 - SO, EVERYTHING EXCEPT PROTEINS PASS THROUGH

- MOLECULES ABSORBED BY THE PROXIMAL TUBULE:

 Na*: transported via ACTIVE TRANSPORT

 Cl: transported by DEFERMANCE TO THE STATE OF TH - Cl: transported by DIFFUSION due to an electrical greatent present as a result of Na⁺
 - o acids: transo lead into surrounding tissues by CO-TRANSPORTER PROTEIN
 - *Urea*: moves out of proximal tubule from high to low concentrations by **DIFFUSION**

LOOP OF HENLE:

- 1. <u>Descending Limb</u>:
 - **Na**⁺ and **Cl**⁻ enter by **DIFFUSION**
 - **Water** leaves
 - The volume of the *filtrate* is reduced; the concentration is greater
 - Freely permeable to water
- 2. Hairpin Bend:
 - The *filtrate* is at its highest concentration
- 3. Ascending Limb:
 - *Cl*⁻ and *Na*⁺ is pumped out
 - Causes an increase in **NaCl** concentration in the medulla tissue

- ONCE THE VISUAL PIGMENT IS BLEACHED, THE ROD CANNOT BE STIMULATED AGAIN UNTIL THE RHODOPSIN IS RESYNTHESISED

- IT TAKES ENERGY TO CONVERT TRANS-RETINAL → CIS-RETINAL WHICH THEN **JOINS TO OPSIN & FORMS RHODOPSIN**

8A: Habituation:

THE DIMINISHING OF AN INNATE RESPONSE TO FREQUENT STIMULATION OF **STIMULI**

- 1. With repeated stimulation, Ca^{2+} channels become less responsive
 - Less *Ca*²⁺ crosses the presynaptic membrane
- 2. Less neurotransmitter is released
- 3. Less depolarisation of the postsynaptic membrane
 - No action potential is triggered in the motor neurone

8B: Spinal Reflexes:

- A stimulus is received by a sensory of the Sale CO.UK
 An impulse travels up the Sale co.ux
 into the grave 2. An impulse travels up the Shisory neurone through the dorsal root ganglion & into the grovest that of the spinal cards
- Then it synaptes with a motor neurone within the grey matter
- 4. The impulse passes along the motor neurone, leaving the spinal cord through the ventral root
 - It travels down to the effector organ
 - Typically a muscle
- 5. The motor end plate in the muscle transfers the stimulus to the muscle which contracts
 - This causes the body to move the body part away from danger

8B: Cranial Reflexes: AKA. Pupil Reflex:

- 1. Light falling on the sensory cells of the retina causes impulses to travel along the neurones in the optic nerve to the brain
 - The brighter the light, the larger the frequency of action potentials
- 2. The impulse is detected in a control centre in the midbrain
- 3. The impulse travels along 2 neurones to further control centres