» Example 5: The graphof y = |x|in Figure 2.2.10 hﬁ\komer atx = 0, which implies
that f(x) = |x| is not differentiable at x = O\e cO

S
(a) Prove that f(x) ;‘unz@at x = 0 by showing that the limit in Defi-
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(b) @ﬁ%}!)rmula f@ﬂ@ tL

Solution (a). From Formula (5) with x5 = 0, the value of f’(0), if it were to exist, would
be given by
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Since these one-sided limits are not equal. the two-sided limit in (5) does not exist, and
hence f is not differentiable at x = 0.
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OTHER DERIVATIVE NOTéT)I(ONS
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f n &ec@% = D[ f(x)]

In the case where there i1s a dependent variable y = f(x), the derivative is also commonly

denoted by f
_ s e avy
dx

With the above notations, the value of the derivative at a point x can be expressed as
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* A function f'is gnd to be differentiable at xif the above limit exist.

A function 1s non-differentiable at corner points, points of discontinuities
and points of vertical tangency.

 [fa function f 1s differentiable at x0, then f is continuous at X.



