Gross loss at issue:

- gross future loss = PV(f.benefits) + PV(f.expenses) PV(f.gross premiums)
- Equivalence principle:

$$E(gross\ future\ loss) = 0$$

E(f.gross premium) = EPV(f.benefits) + EPV(f.expenses)

 $APV(future \ premium) = APV(future \ benefits)$

- Notations:
 - G: gross premium
 - \circ π : premium
 - *e*: the level renewal expense
 - \circ e_f : the first year expense
 - *E*: settlement expense
 - *b*: the face amount
- 1. Mean
 - Example:

For a fully discrete 20-year term policy on (30) with face amount 100,000, you are given

- $A_{30:20} = 0.450$ I.
- $A_{30:\frac{1}{20}} = 0.400$ II.
- III. Expenses are in the following table:

<u>Inpenses are in the following ta</u>				
	Per premium		er policy	
First year	35%	0.0	10.00	
Renewal	3%		2.00	
	in a large of the second			

- IV.
- V.
- v = 0.96The annual gross promium i (40). $_0L$ is the gross loss at issue random variable (12) te E[-L]. VI.
- VII.
- Calculate *E*
 - 230.<u>20</u> = 13.75 0.04
 - $E\begin{bmatrix} 0\\ 0\end{bmatrix} = 100,000A^{1}_{30;\overline{120}} + (0.32 + 0.03\ddot{a}_{30;\overline{120}})G + 8 + 2\ddot{a}_{30;\overline{120}} 13.75G$ $= 100,000(0.\overline{45} - 0.4) + (0.32 + 13.75 \times 0.03)400 + 8 + 2 \times 13.75 - 13.75G$ = -171.5
- 2. Variance discrete (2 approaches to calculate: formula & first principles)
 - a. By formula For whole life and endowment insurances with level expenses past issue, the formulas will work even if there are higher expenses in the 1st year payable at the beginning of the year, but otherwise expenses should not vary by duration.
 - For fully discrete whole life insurance, the gross future loss is

$${}_{0}L = (b+E)v^{K_{x}+1} + (e_{f}-e) - (G-e)\ddot{a}_{[K_{x}+1]}$$
$$Var({}_{0}L) = ({}^{2}A_{x} - A_{x}^{2})(b+E + \frac{G-e}{d})^{2}$$

- Notes:
 - 1) If G is determined by the equivalence principle, expenses do not differ between first year and renewal, and there are no settlement expenses (E), then G - e = net premiumand the formula reduces to the formula for the variance of the future net loss.

2

2) A similar formula applies for endowment insurance.

$$Var(_{0}L) = \left({}^{2}A_{x:\underline{n}} - \left(A_{x:\underline{n}}\right)^{2}\right)\left(b + \frac{\pi}{d}\right)^{2}$$
$$Var(_{0}L) = b^{2}\left[\frac{{}^{2}A_{x:\underline{n}} - \left(A_{x:\underline{n}}\right)^{2}}{\left(1 - A_{x:\underline{n}}\right)^{2}}\right]$$
if equivalence principle premium is used
$$Var(_{0}L) = \frac{q(1-q)}{q + {}^{2}i}$$
for whole life with equivalence principle and constant rate of mortality only