Mortality Improvement Models

Deterministic Models

1. Single-factor projection scale – $\phi(x)$

$$q(x, y + t) = q(x, y) (1 - \phi(x))^{t}$$

You are given the following mortality rates for 2020:

X	54	55	56	57
q_x	0.0032	0.0034	0.0037	0.0041

Projection scale AA for females is used. An excerpt is:

X	54	55	56	57
$\phi(x)$	0.01	0.008	0.006	0.005

Calculate the probability that a female age 54 in 2021 will die in the 3rd year.

o
$$q(54, 2021) = 0.0032(1 - 0.01) = 0.00317$$

 $q(55, 2022) = 0.0034(1 - 0.008)^2 = 0.00335$ because $(2022-2022) = 2 = t$
 $q(56, 2023) = 0.0037(1 - 0.006)^3 = 0.00363$
 $q(54, 2021) = (1 - 0.00317)(1 - 0.00335)(0.00363) = 0.003610$

2. Two-factor projection scale – $\phi(x, y)$

$$q(x,y) = q(x,y-1)(1-2y)$$

Two-factor projection scale – $\phi(x,y)$ q(x,y)=q(x,y-1) (1-3) (2) $q_{80}=0.0605$ for a female in 2014. Martally Leprovement rates from MP-2014 are:

480 0.000	101 01 101110110 1		De		
Year	2014	7015	2017	2017	2018
Age 80	0.0211	0.0203	0.0193	0.0183	0.0172

Calculate
$$q(80, 2017)$$
 $(1 - \phi(80, 2018))$
 $= q(80, 2016) (1 - \phi(80, 2017)) (1 - \phi(80, 2018))$
 $= q(80, 2016) (1 - \phi(80, 2017)) (1 - \phi(80, 2018))$
 $= q(80, 2015) (1 - \phi(80, 2016)) (1 - \phi(80, 2017)) (1 - \phi(80, 2018))$
 $= q(80, 2014) (1 - \phi(80, 2015)) (1 - \phi(80, 2016)) (1 - \phi(80, 2017)) (1 - \phi(80, 2018))$

$$q(80,2018) = (0.0605)(1-0.0203)(1-0.0193)(1-0.0183)(1-0.0172) = 0.056083$$

Conclusion for the two-factor projection scale formula: If the question gives the year in year A (MP-A), and the question is to calculate the mortality in year B.

$$q(x,y) = q(x,y-1)(1-\phi(x,y))$$

$$q(x,B) = q(x,A)(1-\phi(x,A+1))(1-\phi(x,A+2))...(1-\phi(x,B))$$

- 3. Construction of MP-2014
 - a. Develop short term improvement factors. Raw mortality experience from 1950-2007 is logged and smoothed in two dimensions to obtain s(x, t). Then $\hat{q}(x,t) = e^{s(x,t)}$, and

$$\phi(x,t) = 1 - \frac{\hat{q}(x,t)}{\hat{q}(x,t-1)} = 1 - e^{s(x,t)-s(x,t-1)}$$