THE JOULE

Since heat energy is energy, in the SI system, the unit of heat energy is the same as the unit of energy—the joule (J). It takes 4.184 J of energy to raise the temperature of 1 g of water by 1 °C. This means that 1 cal = 4.184 J.

How many joules are needed to raise the temperature of 1 kg of water by 1 °C?

Answer: For each gram of water, it will take 4.184J of energy to raise its temperature by 1°C. Since 1kg is 1,000g, it will take $1,000g \cdot 4.184J/g = 4,184J$ (or 4.184 kJ)

From here on out, we are going to use the SI system (journal of Section 2) en working with heat energy. when working with heat energy.

SPECIFIC HEAT

from Notes all paidle 18 of 11 heat energy is with 10 1 g of water, the water's temperature rucs 1°C. To raise the tem eraches 1 g of glycerin by 1°, on the other hand, requires only 2.51 J. And to raise the temperature of 1g of aluminum by 1° requires only 0.92 J. Specific heat is defined as follows:

Specific heat = the heat energy needed to raise the temperature of a unit mass of a given substance by 1°C.

The table here lists the specific heats of a number of substances in joules per gram per °C (which is also equivalent to kilojoules per kilogram per °C).

Material	Specific heat (J/g/°C) and (kJ/kg/°C)
Aluminum	0.920
Copper	0.377
Glass	0.669
Glycerin	2.510
Ice	2.092
Iron	0.460
Silver	0.251
Water	4.184
Water vapor	2.092

When heat energy is added (or removed) from a substance, the resulting temperature change depends on the mass of the substance, the specific heat of