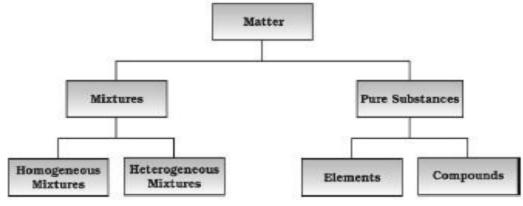
preceding digit remains unchanged. 8.375 is rounded off to 8.38 while 8.365 is rounded off to 8.36.

Dimensional Analysis During calculations generally there is a need to convert units from one system to other. This is called **factor label method** or **unit factor method** or **dimensional analysis**.


For example- 5 feet and 2 inches (height of an Indian female) is to converted in SI unit

1 inch = 2.54 x 10⁻² m
1 =
$$\frac{2.54 \times 10^{-2} \text{ m}}{1 \text{ inch}}$$
 then, 5 feet and 2 inch = 62 inch
= 62 inch $\times \frac{2.54 \times 10^{-2} \text{ m}}{1 \text{ inch}}$ = 1.58 m

Physical Classification of Matter

Properties	Solid	Liquid	Gas
1. volume	Definite	Definite	Indefinite
2. Shape	Definite	Indefinite	Indefinite
3. Inter molecular	Very high	Moderate	Negligible / Very
force of attraction			low
4. arrangement of	Orderly arranged	Free to move	Free to move every
molecules		within the volume	where
5. Inter molecular	Very small	Slightly greater	V y great
space		Logale.	
7. Compressibility	Not compressible	Notcompressible	Highly
 8. Expansion on heating 9. Rigidity 	croff '	s 16	compressible
8. Expansion on	Vew little	AerOnle	Highly expand
heating	en nade		
9. Rigidi y	Very right	Not rigid knownas	Not rigid and
		fluid	known as fluid
9. Fluidity	Can't flow	Can flow	Can flow
10. Diffusion	They can diffuse	Can diffuse And	Can diffuse And
	due to kinetic	rate of diffusion is	rate of diffusion is
	energy of	very fast	very fast
	liquid/gases		

Chemical Classification of matter---

8. State the number of significant figures in each of the following:

(i) 208.91 (ii) 0.00456 (iii) 453 (iv) 0.346

Ans.

- (i) 208.91 has five significant figures.
- (ii) 0.00456 has three significant figures.
- (iii) 453 has three significant figures.
- (iv) 0.346 has three significant figures.
- 8. Express the results of the following calculations to the appropriate number of significant figures.

(i)
$$\frac{3.24 \times 0.08666}{5.006}$$
 (ii) $\frac{(1.36 \times 10^{-4})(0.5)}{2.6}$

Ans.

(i)
$$\frac{3.24 \times 0.08666}{5.006} = 0.05608 = 0.0561$$

(ii) $\frac{(1.36 \times 10^{-4})(0.5)}{2.6}$

$$= 0.2615 \text{ x } 10-4 = 0.3 \text{ x } 10^{-4}$$

9. How are 0.50 mol Na2CO3 and 0.50 M Na2CO3 different? Ans. Molar mass of Na2CO3= $2 \times 23 + 12 + 3 \times 16 = 106 \text{ g} / \text{mol}$

0.50 molNa2CO3means 0.50 x 106 = 53 g

0.50 M Na2CO3 means 0.50 mol i.e. 53 g 3 are present in I L of the solution.

questions with a ThreeMark

1. What is unit factor method? Express he following in SI units - 93 million miles (Patence between earth 10 sun)

Ans. Method to convert units from one system to other is called unit factor method.

93 million miles = 93×10^6 miles

million mile =
$$93 \times 10^6$$
 mile $\times \frac{1.60934 \times 10^3 \text{ m}}{1 \text{ mile}}$
= $1.5 \times 10^{11} \text{ m}$

2. Write the three points of difference between compound and mixture.

Compound	Mixture
Constituents are always present in a	Constituents may be present in any
fixed ratio by mass	ratio
May or may not be homogeneous in	Always homogeneous in nature
nature	
Constituents can be easily separated	Constituents cannot be easily