B.Sc. Punjab University 2012

Mathematics B Course

Max. Marks: 100 Time Allowed: 3 Hrs. Attempt SIX questions in all, selecting TWO questions from Section I & II each and ONE question from Section III & IV each.

Paper: B

9,8

8,8

1.a) State and prove De Moivre's theorem. 9,8
b) Prove that: Log
$$(1 + \cos \theta + i \sin \theta) = \ln (2 \cos \frac{\theta}{2}) + i$$

(Section - I)

b) Prove that: Log
$$(1 + \cos \theta + i \sin \theta) = \ln (2 \cos \frac{\theta}{2}) + \frac{\theta}{2}$$

2.a) Evaluate:
$$1 + x \cos \theta + x^2 \cos 2\theta + ... + x^n \cos n\theta$$
. 9,8
b) Prove that in a spherical triangle ABC,
$$\sin\left(\frac{A}{2}\right) = \sqrt{\frac{\sin(s-b)\sin(s-c)}{\sin b \sin c}}$$

if $(x, y) \neq (0, 0)$

Let $f(x,y) = \begin{cases} \frac{x^3 + y^3}{x^2 + y^2} \end{cases}$

or diverges.

of change. Find the direction of no change at (a,b) 9,8 Find the minimum distance between the lines x = t, y = 3 - 2t, z = 1 + 2t and x = -1 - s, y = s, z = 4-3s.(Section – II)

5. a) Determine whether the series $\sum_{n=1}^{\infty} \frac{\arctan n}{1+n^2}$ converges

Find those positive values of x for which the series

change of U at (a, b) and magnitude of this greatet rate

$$1 + \sum_{1}^{\infty} \frac{x^{2n}}{2n}$$
 converges.

the series
$$\sum_{1}^{\infty} a_n$$
 9,8

b) Find radius of convergence and interval of convergence of the power series $\sum_{1}^{\infty} \frac{(-1)^{n+1}(x+1)^{2n}}{(n+1)^2 5^n}$

7.a) Find volume of the solid generated by revolving the

6. a) Prove that if the series $\sum |a_n|$ converges then so does

latusrectum (x = 2) about the y-axis. b) Determine whether the improper integral $\int \frac{x^3}{x^3+1} dx$ converges or diverges. 8.a) Find moment of inertia of a spherical ball of constant

density with respect to a diameter.

area bounded by the parabola $y^2 = 8x$ and its

- Find the area bounded by $x^2 = 4y$ and $8y = x^2 + 16$ (Section - III) 9. a) Show that every subgroup of a cyclic group is cyclic. 8,8 b) Let H be a subgroup of a group G and a ∈ G. If (Ha)-1
- $= \{(ha)^{-1} | h \in H |, \text{ then show that } (Ha)^{-1} = a^{-1}H.$ 8,8 10. a) Prove that for all a, b in a group G, whethertesale co. uk

 1 2 3 4 from

 Preview 6 Page is even or odd. permutation b) Determine
- open sphere in a metric space X is an open set. b). Show that closed intervals are closed sets in metric space R. 12. a) If A,B are two subsets of a metric space X; then prove that 8,8

11. a) Define an open set in a metric space. Show that an

 $Ext(A \cup B) = Ext(A) \cap Ext(B)$. Show that the limit of a convergent sequence in a metric space is unique.