1A/2004BA/BSc

A. COURSE OF MATHEMATICS

PAPER: A

TIME ALLOWED: 3 hours

MAX. MARKS: 100

Attempt **SIX** questions by selecting TWO questions from Sections - I, TWO from Section - II, ONE from Section - III and ONE from Section - IV

SECTION – I

- a) Find the values of 'a' and 'b' so that f is continuous and differentiable at $x = 1 \text{ where } f(x) = \begin{cases} x^3 & \text{if } x < 1 \\ ax + b & \text{if } x \ge 1 \end{cases}$
 - b) Evaluate $\lim_{x \to 0} x \left[\frac{1}{x} \right]$, $\left[\cdots \right]$ being the bracket function.
- - b) Use the Newton Raphson method to approximate upto four places of decimal, root of $x^3 5x + 3 = 0$ with $x_0 = 0$.
- 3. a) Show that $\frac{d^n}{dx^n} \left(\frac{\ln x}{x} \right) = \frac{(-1)^n n!}{x^{n+1}} \left[\ln x 1 \frac{1}{2} \frac{1}{3} \cdots \frac{1}{n} \right]$
 - b) If f is a thrice differentiable function, prove by L' Hospital's Rule that $\lim_{h \to 0} \frac{f(x+h) f(x) hf'(x) \frac{h^2}{2}f''(x)}{h^3} = \frac{f'''(x)}{6}.$
- 4. a) If x > 0 prove that $x \ell n(1+x) > \frac{x^2}{2(1+x)}$
 - b) Prove that under certain conditions (to be stated)
 f(a + h) = f(a) + hf'(a + θh), where 0 < θ < 1. Prove also the head limiting value of θ, when h decreases infinitely is 2.
- SECTION 9.

 a) If a tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{CT^2} = 1$, with entire "C" meets

 the major and minor axes in T and t, prove that $\frac{a^2}{CT^2} + \frac{b^2}{ct^2} = 1$.
 - b) Show that the curves $r^m = a^m \cos m\theta$ and $r^m = a^m \sin m\theta$ cut each other orthogonally.
- a) Show that the locus of the middle points of a system of parallel chords of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is $y = \frac{-b^2}{a^2m}x$ where m is slope of the chords.
 - by Examine whether the equation $2x^2 xy + 5x 2y + 2 = 0$ represents two straight lines. If so find equation of each straight line.
- 7. a) Find the equation of the perpendicular from the point P (1, 6, 3) to the straight line $\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}$. Also obtain its length and coordinates of the foot of the perpendicular.
 - b) Prove that the straight lines $\frac{x-1}{2} = \frac{y+1}{-3} = \frac{z+10}{8}$ and $\frac{x-4}{1} = \frac{y+3}{-4} = \frac{z+1}{7}$ intersect. Also find the point of intersection and the plane through them.