Computer precision and type of numbers

On computers we have only finite precision (number of digit bits)

Def: Normalized floating point representation with respect to base b, stores a number x as $x = 0. a_i \cdots a_k b^n$ with:

 $a_i \in \{0, \dots, b-1\}$ are <u>digits</u>, k is called <u>precision</u>, n is called <u>exponent</u>, $a_i \dots a_k$ is called a <u>mantissa</u>, $a_1 \neq 0$. The fact that $a_1 \neq 0$ is called a <u>normalization</u>, it makes representation unique.

Ex.:

base b = 10: 32.213 0.32213 $\cdot 10^2$ base b = 2: $x = \pm 0. b_1 b_2 \cdots b_k 2^n$, where $b_1 = 1$

Example

Since $2^{-24} \approx 10^{-7}$, we can represent 7 significant digits

We can obtain better representation via double precision (8 bytes)