
Compute 𝑙𝑛(2) 

We can choose the Taylor series for 𝑙𝑛(𝑥 + 1) and evaluate at 𝑥 = 1. In which 

case: 
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By keeping 8 terms, we obtain the following result: 

𝑙𝑛(2) ≈ 0.63452 

Via calculator we get 𝑙𝑛(2) ≈ 0.69314. 

In order to get a more accurate approximation, we can use another function’s 

Taylor series. We can try ln (
1+𝑥

1−𝑥
). 

From using the logarithm’s argument division rule, we have 

ln (
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) = ln(1 + 𝑥) − ln(1 − 𝑥) 

If we choose 𝑥 =
1

3
 instead of 𝑥 = 1, we then get  
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This time, after only 4 terms we have a much better estimate of the result, at: 

ln(2) ≈ 0.69313 

 

Theorem: Reformation of Taylor’s Theorem  

 

Assume that 𝑓 ∈ 𝐶𝑛+1([𝑎, 𝑏]). We change c to x and the old x becomes 𝑥 + ℎ, 

where 𝑥, 𝑥 + ℎ ∈ [𝑎, 𝑏]. 
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where 

𝜓ℎ ∈ [𝑎, 𝑏] 
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