
Henceforth, we proceed with the integral dependent on s. 

 

1

𝑛!
 ∫(𝑥 − 𝑐)(𝑥 − (𝑐 + 𝑠(𝑥 − 𝑐)))𝑛 𝑓(𝑛+1)(𝑐 + 𝑠(𝑥 − 𝑐)) 𝑑𝑠 =

1

0

 

=
1

𝑛!
 ∫(𝑥 − 𝑐)(𝑥 − 𝑐 − 𝑠𝑥 + 𝑠𝑐)𝑛 𝑓(𝑛+1)(𝑐 + 𝑠(𝑥 − 𝑐)) 𝑑𝑠 =

1

0

 

=
1

𝑛!
 ∫(𝑥 − 𝑐)((𝑥 − 𝑠𝑥) + (𝑠𝑐 − 𝑐))𝑛 𝑓(𝑛+1)(𝑐 + 𝑠(𝑥 − 𝑐)) 𝑑𝑠 =

1

0

 

=
1

𝑛!
 ∫(𝑥 − 𝑐)(𝑥(1 − 𝑠) − 𝑐(1 − 𝑠))𝑛 𝑓(𝑛+1)(𝑐 + 𝑠(𝑥 − 𝑐)) 𝑑𝑠 =

1

0

 

=
1

𝑛!
 ∫(𝑥 − 𝑐)(𝑥 − 𝑐)𝑛 (1 − 𝑠)𝑛 𝑓(𝑛+1)(𝑐 + 𝑠(𝑥 − 𝑐)) 𝑑𝑠 =

1

0

 

=
(𝑥 − 𝑐)𝑛+1

𝑛!
 ∫(1 − 𝑠)𝑛 𝑓(𝑛+1)(𝑐 + 𝑠(𝑥 − 𝑐)) 𝑑𝑠

1

0

 

Thus, we conclude that the integral form of the Taylor series expansion 

remainder can be expressed like below: 

𝑅𝑛,𝑐(𝑥) =
(𝑥 − 𝑐)𝑛+1

𝑛!
 ∫(1 − 𝑠)𝑛 𝑓(𝑛+1)(𝑐 + 𝑠(𝑥 − 𝑐)) 𝑑𝑠

1

0

 

c) 

The remainder can also be conveyed in the Lagrange form of the 

remainder.  

Proof: 

From Problem 1, we take the following theorem  

𝑓(𝜉) ∙ ∫ 𝑔(𝑥)

𝑏

𝑎

 𝑑𝑥 =  ∫ 𝑓(𝑥) 𝑔(𝑥) 𝑑𝑥

𝑏

𝑎

 ,        𝑓𝑜𝑟 𝜉 ∈ [𝑎, 𝑏] 
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It is clear that the left-hand side is the derivative of the function 𝐹(𝜏), 

which means that 

𝑙𝑖𝑚
ℎ→0

𝑓(𝑐) = 𝐹′(𝜏) 

For the theorem to hold true, the right-hand side should be equal to the 

function under the integral. To prove that the statement above is true we 

can use the Squeeze Law. By Squeeze Law: 𝑐 ∈ [𝜏, 𝜏 + ℎ],   𝑠𝑜  𝜏 ≤ 𝑐 ≤ 𝜏 + ℎ  

 

 

𝑙𝑖𝑚
ℎ→0

𝜏 = 𝜏  

and  

𝑙𝑖𝑚
ℎ→0

𝜏 + ℎ = 𝜏 , 

Then this means that 

𝑙𝑖𝑚
ℎ→0

𝑐 = 𝜏  

Since 𝑓 is a continuous function at 𝜏 

𝑙𝑖𝑚
ℎ→0

𝑓(𝑐) = 𝑓(𝜏) 

and this leads us to 

𝐹′(𝜏) = 𝑓(𝜏) 

Consequently, the proof is concluded. 
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