Henceforth, we proceed with the integral dependent on s.
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remainder can be expressed like below:
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The remainder can also be conveyed in the Lagrange form of the
remainder.

Proof:

From Problem 1, we take the following theorem
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It is clear that the left-hand side is the derivative of the function F(7),
which means that

im f(c) = F'(7)

For the theorem to hold true, the right-hand side should be equal to the
function under the integral. To prove that the statement above is true we
can use the Squeeze Law. By Squeeze Law: c € [t,T+ h], so t<c<t+h
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Consequently, the proof is concluded.

Then this means that



