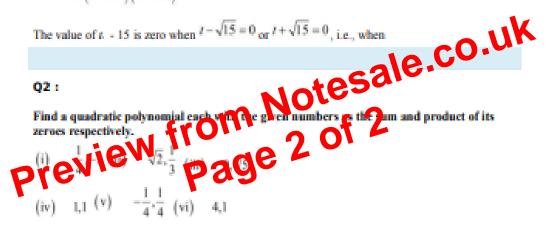
Product of zeroes =
$$\frac{-1}{3} \times \frac{3}{2} = \frac{-1}{2} = \frac{-3}{6} = \frac{\text{Constant term}}{\text{Coefficient of } x^2}$$

(iv)
$$4u^2 + 8u = 4u^2 + 8u + 0$$

= $4u(u+2)$


The value of 4u + 8u is zero when 4u = 0 or u + 2 = 0, i.e., u = 0 or u = -2

Therefore, the zeroes of 4u + 8u are 0 and -2.

Sum of zeroes =
$$0 + (-2) = -2 = \frac{-(8)}{4} = \frac{-(\text{Coefficient of } u)}{\text{Coefficient of } u^2}$$

Product of zeroes = $0 \times (-2) = 0 = \frac{0}{4} = \frac{\text{Constant term}}{\text{Coefficient of } u^2}$

(v)
$$t^2-15$$

= $t^2-0.t-15$
= $(t-\sqrt{15})(t+\sqrt{15})$

Answer:

(i)
$$\frac{1}{4}$$
,-1

Let the polynomial be $\alpha x^2 + bx + c$, and its zeroes be α and β .