Step 5 - store output of step 4 toc
Step 6 — print ¢
Step 7 - STOP

Algorithms tell the programmers how to code the program.
Alternatively, the algorithm can be written as -

Step 1 - START ADD

Step 2 - getvaluesofa &b

Step3-c<a+b

Step 4 - display c

Step 5 - STOP

In design and analysis of algorithms, usually the secoqhx\method
is used to describe an algorithm. It makes s@@r analyst
to analyze the algorithm |gno§\§> "nted definitions. He

can observe what €€6mn Otf nZ’bsed and how the

process is flo l
ertﬁggep numbe@ ag)?onal

We design an algorithm to get a solution of a given problem. A
problem can be solved in more than one ways.

Solution Solution
#1 #2

N v

Problem

A

Solution Solution
#4 #3

Step 3 - Stop

Here we have three variables A, B, and C and one constant.
Hence S(P) = 1 + 3. Now, space depends on data types of given
variables and constant types and it will be multiplied accordingly.

Time Complexity

Time complexity of an algorithm represents the amount of time
required by the algorithm to run to completion. Time
requirements can be defined as a numerical function T(n), where
T(n) can be measured as the number of steps, provided each step
consumes constant time.

For example, addition of two n-bit integ @I@\‘rsteps
Consequently, the total computatlonal ﬁn c * n, where

cis the time taken for the addj ﬁ: Here, we observe
that T(n) grows Ime*f lﬁjt@&e ases.
\e
preV™ pag®

Data Structures - Asymptotic Analysis

Asymptotic analysis of an algorithm refers to defining the
mathematical boundation/framing of its run-time performance.
Using asymptotic analysis, we can very well conclude the best
case, average case, and worst case scenario of an algorithm.

Asymptotic analysis is input bound i.e., if there's no input to the
algorithm, it is concluded to work in a constant time. Other than
the "input" all other factors are considered constant.

Asymptotic analysis refers to computing the running time of any
operation in mathematical units of computation. For example,

polynomial - now

exponential - 200

Data Structures - Greedy Algorithms

An algorithm is designed to achieve optimum solution for a given
problem. In greedy algorithm approach, decisions are made
from the given solution domain. As being greedy, the closest
solution that seems to provide an optimum solution is chosen.

Greedy algorithms try to find a localized optlrgéum%.lutlon
which may eventually lead to globall @u@ d solutions
However, generally greedy a&@?ﬁ@s o not provide globally

optimized soll\:gms_‘(;g"g lg 0" 22

Cou

Thls%roblem is to cgnt to a desired value by choosing the least
possible coins and the greedy approach forces the algorithm to
pick the largest possible coin. If we are provided coins of X 1, 2,
5 and 10 and we are asked to count X 18 then the greedy
procedure will be -

. 1-Select one X 10 coin, the remaining count is 8

« 2 -Then select one X5 coin, the remaining count is 3

« 3 -Then select one X 2 coin, the remaining countis 1

. 4 - And finally, the selection of one X 1 coins solves the
problem

Though, it seems to be working fine, for this count we need to
pick only 4 coins. But if we slightly change the problem then the

