
 

Step 5 − store output of step 4 to c 
Step 6 − print c 
Step 7 − STOP 

Algorithms tell the programmers how to code the program. 
Alternatively, the algorithm can be written as − 

Step 1 − START ADD 
Step 2 − get values of a & b 
Step 3 − c ← a + b 
Step 4 − display c 
Step 5 − STOP 

In design and analysis of algorithms, usually the second method 
is used to describe an algorithm. It makes it easy for the analyst 
to analyze the algorithm ignoring all unwanted definitions. He 
can observe what operations are being used and how the 
process is flowing. 

Writing step numbers, is optional. 

We design an algorithm to get a solution of a given problem. A 
problem can be solved in more than one ways. 

 

Preview from Notesale.co.uk

Page 11 of 22



 

Step 3 -  Stop 

Here we have three variables A, B, and C and one constant. 
Hence S(P) = 1 + 3. Now, space depends on data types of given 
variables and constant types and it will be multiplied accordingly. 

Time Complexity 

Time complexity of an algorithm represents the amount of time 
required by the algorithm to run to completion. Time 
requirements can be defined as a numerical function T(n), where 
T(n) can be measured as the number of steps, provided each step 
consumes constant time. 

For example, addition of two n-bit integers takes n steps. 
Consequently, the total computational time is T(n) = c ∗ n, where 
c is the time taken for the addition of two bits. Here, we observe 
that T(n) grows linearly as the input size increases. 

 

 

Data Structures - Asymptotic Analysis 

Asymptotic analysis of an algorithm refers to defining the 
mathematical boundation/framing of its run-time performance. 
Using asymptotic analysis, we can very well conclude the best 
case, average case, and worst case scenario of an algorithm. 

Asymptotic analysis is input bound i.e., if there's no input to the 
algorithm, it is concluded to work in a constant time. Other than 
the "input" all other factors are considered constant. 

Asymptotic analysis refers to computing the running time of any 
operation in mathematical units of computation. For example, 

Preview from Notesale.co.uk

Page 14 of 22



 

polynomial − nΟ(1) 

exponential − 2Ο(n) 

 

Data Structures - Greedy Algorithms 

An algorithm is designed to achieve optimum solution for a given 
problem. In greedy algorithm approach, decisions are made 
from the given solution domain. As being greedy, the closest 
solution that seems to provide an optimum solution is chosen. 

Greedy algorithms try to find a localized optimum solution, 
which may eventually lead to globally optimized solutions. 
However, generally greedy algorithms do not provide globally 
optimized solutions. 

Counting Coins 

This problem is to count to a desired value by choosing the least 
possible coins and the greedy approach forces the algorithm to 
pick the largest possible coin. If we are provided coins of ₹ 1, 2, 
5 and 10 and we are asked to count ₹ 18 then the greedy 
procedure will be − 

• 1 − Select one ₹ 10 coin, the remaining count is 8 
• 2 − Then select one ₹ 5 coin, the remaining count is 3 
• 3 − Then select one ₹ 2 coin, the remaining count is 1 
• 4 − And finally, the selection of one ₹ 1 coins solves the 

problem 

Though, it seems to be working fine, for this count we need to 
pick only 4 coins. But if we slightly change the problem then the 

Preview from Notesale.co.uk

Page 18 of 22


