

Data Structure and Algorithms Binary Search

A quick search algorithm with run-time complexity of O is binary
search (log n). Divide and conquer is the guiding philosophy
behind this search algorithm. The data collection must be in
sorted form for this algorithm to function correctly.

Binary search compares the collection's middle item in an effort
to find a specific item. If a match occurs, then the index of item
is returned. The item is searched in the sub-array to the left of
the middle item if the middle item is greater than the item. If not,
the sub-array to the right of the middle item is searched for the
item. This procedure is repeated on the sub-array as well until
the sub-size array's reaches zero.

How Binary Search Works?

The target array must be sorted in order for a binary search to
function. We will use a visual illustration to teach us how binary
search works. Here is our sorted array, and let's imagine that we
need to use binary search to locate the value 31.

First, we shall determine half of the array by using this formula −

mid = low + (high - low) / 2

Here it is, 0 + (9 - 0) / 2 = 4 (integer value of 4.5). So, 4 is the mid
of the array.

Preview from Notesale.co.uk

Page 10 of 24

Now we compare the value stored at location 4, with the value
being searched, i.e. 31. We find that the value at location 4 is 27,
which is not a match. As the value is greater than 27 and we have
a sorted array, so we also know that the target value must be in
the upper portion of the array.

We change our low to mid + 1 and find the new mid value again.

low = mid + 1
mid = low + (high - low) / 2

Our new mid is 7 now. We compare the value stored at location
7 with our target value 31.

The value stored at location 7 is not a match, rather it is more
than what we are looking for. So, the value must be in the lower
part from this location.

Preview from Notesale.co.uk

Page 11 of 24

Hence, we calculate the mid again. This time it is 5.

We compare the value stored at location 5 with our target value.
We find that it is a match.

We conclude that the target value 31 is stored at location 5.

Binary search halves the searchable items and thus reduces the
count of comparisons to be made to very less numbers.

Pseudocode

The pseudocode of binary search algorithms should look like this
−

Procedure binary_search
 A ← sorted array
 n ← size of array
 x ← value to be searched

 Set lowerBound = 1
 Set upperBound = n

 while x not found
 if upperBound < lowerBound
 EXIT: x does not exists.

Preview from Notesale.co.uk

Page 12 of 24

want to search the telephone number of Morphius. Here, linear
search and even binary search will seem slow as we can directly
jump to memory space where the names start from 'M' are
stored.

Positioning in Binary Search

In binary search, if the desired data is not found then the rest of
the list is divided in two parts, lower and higher. The search is
carried out in either of them.

Even when the data is sorted, binary search does not take
advantage to probe the position of the desired data.

Position Probing in Interpolation Search

Interpolation search finds a particular item by computing the
probe position. Initially, the probe position is the position of the
middle most item of the collection.

If a match occurs, then the index of the item is returned. To split
the list into two parts, we use the following method −

Preview from Notesale.co.uk

Page 14 of 24

