Ba(OH)₂ (Barium Hydroxide) is composed of 1.2% Hydrogen, 18.7% Oxygen and 80.2% Barium

2.

Element in the	Molar mass of the	Subscript	Total mass
compound	element		contributed by the
			element
Magnesium	24.31 g/mol	1	24.31 g/mol
Sulfur	32.06 g/mol	1	32.06 g/mol
Oxygen	16.00 g/mol	4	64.00 g/mol
Molar mass of MgSO ₄			120.37 g/mol

Percent Magnesium

Percent Magnesium = $\frac{n(molar mass of Magnesium)}{molar mass of MgSO_4} \times 100$ Percent Magnesium = $\frac{1(24.31g/mol)}{120.37g/mol} \times 100$ Percent Magnesium = $\frac{24.31g/mol}{120.37g/mol} \times 100$ Percent Magnesium = (.202) ×100 Percent Magnesium = 20.2% Percent Sulfur = $\frac{n(molar mass of Scriptore)}{moler r(0)} \times 100$ Percent Sulfur = $\frac{1(32.06g/mol)}{120.7g/mol} \times 100$ Percent Sulfur = $\frac{1(32.06g/mol)}{120.7g/mol} \times 100$ Percent Sulfur = $\frac{32.06g/mol}{120.37g/mol} \times 100$ Percent Sulfur = (.266) ×100 Percent Sulfur = 26.6%

Percent Oxygen

Percent Oxygen = $\frac{n(molar \ mass \ of \ Oxygen)}{molar \ mass \ of \ MgSO_4} \times 100$

Percent Oxygen = $\frac{4(16.00g/mol)}{120.37 g/mol}$ x100

Percent Oxygen = $\frac{64.00 \ g/mol}{120.37 \ g/mol}$ x100

Percent Oxygen = (.532) x100

Percent Oxygen = 53.2%

Magnesium sulfate (MgSO₄) is composed of 53.2% Oxygen, 26.6% Sulfur and 20.2% Magnesium

Reymon T. Dela Cruz