
Polymorphism:

Polymorphism is the ability of an object (methods) to take on many forms.

Generally it occurs when we have many classes that are related to each other by inheritance.

In Java, we use method overloading and method overriding to achieve polymorphism.

Differences between OOP and Procedure oriented programming

Basis For

comparison
POP OOP

Basic Procedure/Structure oriented . Object oriented.

Approach Top-down. Bottom-up.

Basis

Main focus is on "how to get the

task done" i.e. on the procedure or

structure of a program .

Main focus is on 'data security'.

Hence, only objects are permitted

to access the entities of a class.

Division
Large program is divided into units

called functions.

Entire program is divided into

objects.

Entity accessing

mode
No access specifier observed.

Access specifier are "private,

default, protected & public”.

Overloading/Polymo

rphism

Neither it overload functions nor

operators.

It overloads functions,

constructors.

Inheritance
Their is no provision of

inheritance.
Supports Inheritance.

Data hiding &

security

There is no proper way of hiding

the data, so data is insecure

Data is hidden with private,

default & protected. hence data

security increases.

Preview from Notesale.co.uk

Page 4 of 42

variables:

Variables are containers for storing data values.

The value depends on the data type of the variable.

The value can be altered during program exam execution.

There are three types of variables in java: local, instance and static.

Syntax: datatype variable_name[=default_value];

Example: int x=50;

Expressions

Any unit of code that can be evaluated to a value is an expression.

Example-1: 10+15

Example-2: (x*y)/z;

Type Casting:

Convert a value from one data type to another data type is known as type casting.

Widening Type Casting: Converting a lower data type into a higher one.

It is also known as implicit conversion or casting down. It is done automatically.

It is safe because there is no chance to lose data.

It takes place when the target type must be larger than the source type.

Example:

int x = 7;

//automatically converts the integer type into long type

long y = x;

Narrowing Type Casting: Converting a higher data type into a lower one.

It is also known as explicit conversion or casting up.

It is done manually by the programmer.

If we do not perform casting then the compiler reports a compile-time error.

Example:

double d = 166.66;

int i = (int) d; //converting double data type into int data type

Preview from Notesale.co.uk

Page 8 of 42

Example:

int a[]=new int[5];

int a[]={};

Multidimensional Array in Java

In such case, data is stored in row and column based index (also known as matrix form).

Syntax to Declare Multidimensional Array in Java

dataType[][] arrayRefVar; (or)

dataType [][]arrayRefVar; (or)

dataType arrayRefVar[][]; (or)

dataType []arrayRefVar[];

Example to instantiate Multidimensional Array in Java

int[][] arr = new int[3][3];

Example-1:

class Test

{

public static void main(String args[])

{

 int arr[][] = { {1,2,3}, {2,4,5}, {4,4,5} };

 for(int i=0;i<3;i++)

 {

 for(int j=0;j<3;j++)

{

 System.out.print(arr[i][j]+" ");

 }

 System.out.println();

 }

}

}

Preview from Notesale.co.uk

Page 16 of 42

 System.out.println("Sum of matrices:-");

 for (i= 0 ; i < row ; i++)

{

for (j= 0 ; j < col ;j++)

System.out.print(res[i][j]+"\t");

 System.out.println();

}

 }

}

Class Example / Working with multiple objects

class Student

{

 private int sno;

 private String sname;

 public void init(int x, String y)

 {

 sno=x;

 sname=y;

 }

 public void display()

 {

 System.out.println(sno);

 System.out.println(sname);

 }

}

class Test

{

 public static void main(String args[])

Preview from Notesale.co.uk

Page 19 of 42

 {

 Student s[]=new Student[5];

 s[0]=new student();

 s[0].init(1,"xxx");

 s[0].display();

 s[1]=new student();

 s[1].init(2,"yyy");

 s[1].display();

 s[2]=new student();

 s[2].init(3,"zzz");

 s[2].display();

 }

}

Method Overloading / Adhoc Polymorphism / Compile time Polymorphism /

Early Binding / Static Binding:

Compile Time Polymorphism: Linking of function call with function definition can be resolved

at compile time itself.

Method Overloading: Defining multiple methods with the same name is called method

overloading.

We can overload two methods as follows

1. By varying no. of arguments.

2. By varying data type of the arguments.

3. By varying order of data types.

Note: we can’t overload two methods by varying only return types.

Preview from Notesale.co.uk

Page 21 of 42

 “this” key word

The keyword ‘this’ is a reference to the current object.

Example:

class Student

{

 private int sno;

 private String sname;

 public void init(int sno, String sname)

 {

 this.sno = sno;

 this.sname = sname;

 }

 public void display()

 {

 System.out.println(sno);

 System.out.println(sname);

 }

}

class Test

{

 public static void main(String args[])

 {

 Student s1 = new Student();

 s1.init(1,"shiva");

 s1.display();

 }

}

Preview from Notesale.co.uk

Page 23 of 42

System.out.println(string.indexOf("al", 5)); // -1

6. contains():

returns true or false after matching the sequence of char value.

Example:

System.out.println("abc".contains("b")); // true

7. startsWith() and endsWith():

Example:

System.out.println("abc".startsWith("a")); // true

System.out.println("abc".startsWith("A")); // false

System.out.println("abc".endsWith("c")); // true

System.out.println("abc".endsWith("a")); // false

8. replace():

The replace() method does a simple search and replace on the string

Example:

System.out.println("abcabc".replace('a', 'A')); // AbcAbc

System.out.println("abcabc".replace("a", "A")); // AbcAbc

9. toLowerCase(): returns a string in lowercase.

Example: System.out.println("Abc123".toLowerCase()); // abc123

10. toUpperCase(): returns a string in uppercase.

Example: String string = "animals";

System.out.println(string.toUpperCase()); // ANIMALS

11. trim(): removes whitespace from the beginning and end of a String.

Example:

System.out.println("abc".trim()); // abc

System.out.println("\t a b c\n".trim()); // a b c

Preview from Notesale.co.uk

Page 29 of 42

