
Preview from Notesale.co.uk

Page 1 of 217

Table of Contents

Chapter 4 - Functions and Program Structure

4.6 Static Variables..13

4.7 Register Variables..13

4.8 Block Structure..14

4.9 Initialization...14

4.10 Recursion...15

4.11 The C Preprocessor..17

4.11.1 File Inclusion..17

4.11.2 Macro Substitution...17

4.11.3 Conditional Inclusion...19

Chapter 5 - Pointers and Arrays...1

5.1 Pointers and Addresses..1

5.2 Pointers and Function Arguments..2

5.3 Pointers and Arrays..5

5.4 Address Arithmetic..7

5.5 Character Pointers and Functions..10

5.6 Pointer Arrays; Pointers to Pointers...13

5.7 Multi-dimensional Arrays..15

5.8 Initialization of Pointer Arrays..17

5.9 Pointers vs. Multi-dimensional Arrays..17

5.10 Command-line Arguments...18

5.11 Pointers to Functions...22

5.12 Complicated Declarations..24

Chapter 6 - Structures..1

6.1 Basics of Structures..1

6.2 Structures and Functions..3

6.3 Arrays of Structures...5

6.4 Pointers to Structures...8

6.5 Self-referential Structures..9

6.6 Table Lookup...12

6.7 Typedef..14

6.8 Unions..16

6.9 Bit-fields..17

Chapter 7 - Input and Output..1

7.1 Standard Input and Output...1

7.2 Formatted Output - printf...2

7.3 Variable-length Argument Lists..3

7.4 Formatted Input - Scanf...4

7.5 File Access...7

7.6 Error Handling - Stderr and Exit..9

7.7 Line Input and Output..10

7.8 Miscellaneous Functions..11

7.8.1 String Operations..11

7.8.2 Character Class Testing and Conversion..12

7.8.3 Ungetc..12

7.8.4 Command Execution..12

7.8.5 Storage Management..12

7.8.6 Mathematical Functions...13

7.8.7 Random Number generation..13

ii

Preview from Notesale.co.uk

Page 3 of 217

Table of Contents

Chapter 8 - The UNIX System Interface..1

8.1 File Descriptors..1

8.2 Low Level I/O - Read and Write...1

8.3 Open, Creat, Close, Unlink..3

8.4 Random Access - Lseek...5

8.5 Example - An implementation of Fopen and Getc..5

8.6 Example - Listing Directories..8

8.7 Example - A Storage Allocator..12

Appendix A - Reference Manual...1

A.1 Introduction...1

A.2 Lexical Conventions...1

A.2.1 Tokens...1

A.2.2 Comments..1

A.2.3 Identifiers...1

A.2.4 Keywords...1

A.2.5 Constants...2

A.2.6 String Literals..3

A.3 Syntax Notation..4

A.4 Meaning of Identifiers...4

A.4.1 Storage Class...4

A.4.2 Basic Types...4

A.4.3 Derived types...5

A.4.4 Type Qualifiers..5

A.5 Objects and Lvalues..6

A.6 Conversions...6

A.6.1 Integral Promotion...6

A.6.2 Integral Conversions..6

A.6.3 Integer and Floating...6

A.6.4 Floating Types...6

A.6.5 Arithmetic Conversions...7

A.6.6 Pointers and Integers...7

A.6.7 Void...8

A.6.8 Pointers to Void...8

A.7 Expressions...8

A.7.1 Pointer Conversion..8

A.7.2 Primary Expressions..9

A.7.3 Postfix Expressions...9

A.7.4 Unary Operators..11

A.7.5 Casts..12

A.7.6 Multiplicative Operators..13

A.7.7 Additive Operators..13

A.7.8 Shift Operators...14

A.7.9 Relational Operators..14

A.7.10 Equality Operators...14

A.7.11 Bitwise AND Operator..15

A.7.12 Bitwise Exclusive OR Operator..15

A.7.13 Bitwise Inclusive OR Operator...15

A.7.14 Logical AND Operator..15

A.7.15 Logical OR Operator...15

A.7.16 Conditional Operator...16

A.7.17 Assignment Expressions..16

iii

Preview from Notesale.co.uk

Page 4 of 217

 40 4

 60 15

 80 26

 100 37

 ...

The more serious problem is that because we have used integer arithmetic, the Celsius temperatures are not

very accurate; for instance, 0oF is actually about -17.8oC, not -17. To get more accurate answers, we should

use floating-point arithmetic instead of integer. This requires some changes in the program. Here is the second

version:

 #include <stdio.h>

 /* print Fahrenheit-Celsius table

 for fahr = 0, 20, ..., 300; floating-point version */

 main()

 {

 float fahr, celsius;

 float lower, upper, step;

 lower = 0; /* lower limit of temperatuire scale */

 upper = 300; /* upper limit */

 step = 20; /* step size */

 fahr = lower;

 while (fahr <= upper) {

 celsius = (5.0/9.0) * (fahr-32.0);

 printf("%3.0f %6.1f\n", fahr, celsius);

 fahr = fahr + step;

 }

 }

This is much the same as before, except that fahr and celsius are declared to be float and the formula

for conversion is written in a more natural way. We were unable to use 5/9 in the previous version because

integer division would truncate it to zero. A decimal point in a constant indicates that it is floating point,

however, so 5.0/9.0 is not truncated because it is the ratio of two floating-point values.

If an arithmetic operator has integer operands, an integer operation is performed. If an arithmetic operator has

one floating-point operand and one integer operand, however, the integer will be converted to floating point

before the operation is done. If we had written (fahr-32), the 32 would be automatically converted to

floating point. Nevertheless, writing floating-point constants with explicit decimal points even when they have

integral values emphasizes their floating-point nature for human readers.

The detailed rules for when integers are converted to floating point are in Chapter 2. For now, notice that the

assignment

 fahr = lower;

and the test

 while (fahr <= upper)

also work in the natural way - the int is converted to float before the operation is done.

The printf conversion specification %3.0f says that a floating-point number (here fahr) is to be printed

at least three characters wide, with no decimal point and no fraction digits. %6.1f describes another number

(celsius) that is to be printed at least six characters wide, with 1 digit after the decimal point. The output

looks like this:

6 Chapter 1 - A Tutorial Introduction

6 Chapter 1 - A Tutorial Introduction

Preview from Notesale.co.uk

Page 18 of 217

The standard library provides several functions for reading or writing one character at a time, of which

getchar and putchar are the simplest. Each time it is called, getchar reads the next input character

from a text stream and returns that as its value. That is, after

 c = getchar();

the variable c contains the next character of input. The characters normally come from the keyboard; input

from files is discussed in Chapter 7.

The function putchar prints a character each time it is called:

 putchar(c);

prints the contents of the integer variable c as a character, usually on the screen. Calls to putchar and

printf may be interleaved; the output will appear in the order in which the calls are made.

1.5.1 File Copying

Given getchar and putchar, you can write a surprising amount of useful code without knowing anything

more about input and output. The simplest example is a program that copies its input to its output one

character at a time:

read a character

 while (charater is not end-of-file indicator)

output the character just read

 read a character

Converting this into C gives:

 "temp0019.html">Chapter 2.)

Exercsise 1-6. Verify that the expression getchar() != EOF is 0 or 1.

Exercise 1-7. Write a program to print the value of EOF.

1.5.2 Character Counting

The next program counts characters; it is similar to the copy program.

 #include <stdio.h>

 /* count characters in input; 1st version */

 main()

 {

 long nc;

 nc = 0;

 while (getchar() != EOF)

 ++nc;

 printf("%ld\n", nc);

 }

The statement

 ++nc;

presents a new operator, ++, which means increment by one. You could instead write nc = nc + 1 but

Chapter 1 - A Tutorial Introduction 9

Chapter 1 - A Tutorial Introduction 9

Preview from Notesale.co.uk

Page 21 of 217

++nc is more concise and often more efficient. There is a corresponding operator -- to decrement by 1. The

operators ++ and -- can be either prefix operators (++nc) or postfix operators (nc++); these two forms have

different values in expressions, as will be shown in Chapter 2, but ++nc and nc++ both increment nc. For

the moment we will will stick to the prefix form.

The character counting program accumulates its count in a long variable instead of an int. long integers are

at least 32 bits. Although on some machines, int and long are the same size, on others an int is 16 bits,

with a maximum value of 32767, and it would take relatively little input to overflow an int counter. The

conversion specification %ld tells printf that the corresponding argument is a long integer.

It may be possible to cope with even bigger numbers by using a double (double precision float). We will

also use a for statement instead of a while, to illustrate another way to write the loop.

 "%.0f\n", nc);

 }

printf uses %f for both float and double; %.0f suppresses the printing of the decimal point and the

fraction part, which is zero.

The body of this for loop is empty, because all the work is done in the test and increment parts. But the

grammatical rules of C require that a for statement have a body. The isolated semicolon, called a null

statement, is there to satisfy that requirement. We put it on a separate line to make it visible.

Before we leave the character counting program, observe that if the input contains no characters, the while

or for test fails on the very first call to getchar, and the program produces zero, the right answer. This is

important. One of the nice things about while and for is that they test at the top of the loop, before

proceeding with the body. If there is nothing to do, nothing is done, even if that means never going through

the loop body. Programs should act intelligently when given zero-length input. The while and for

statements help ensure that programs do reasonable things with boundary conditions.

1.5.3 Line Counting

The next program counts input lines. As we mentioned above, the standard library ensures that an input text

stream appears as a sequence of lines, each terminated by a newline. Hence, counting lines is just counting

newlines:

 #include <stdio.h>

 /* count lines in input */

 main()

 {

 int c, nl;

 nl = 0;

 while ((c = getchar()) != EOF)

 if (c == '\n')

 ++nl;

 printf("%d\n", nl);

 }

The body of the while now consists of an if, which in turn controls the increment ++nl. The if statement

tests the parenthesized condition, and if the condition is true, executes the statement (or group of statements in

braces) that follows. We have again indented to show what is controlled by what.

The double equals sign == is the C notation for ``is equal to'' (like Pascal's single = or Fortran's .EQ.). This

symbol is used to distinguish the equality test from the single = that C uses for assignment. A word of caution:

newcomers to C occasionally write = when they mean ==. As we will see in Chapter 2, the result is usually a

10 Chapter 1 - A Tutorial Introduction

10 Chapter 1 - A Tutorial Introduction

Preview from Notesale.co.uk

Page 22 of 217

 }

The parameter n is used as a temporary variable, and is counted down (a for loop that runs backwards) until

it becomes zero; there is no longer a need for the variable i. Whatever is done to n inside power has no

effect on the argument that power was originally called with.

When necessary, it is possible to arrange for a function to modify a variable in a calling routine. The caller

must provide the address of the variable to be set (technically a pointer to the variable), and the called

function must declare the parameter to be a pointer and access the variable indirectly through it. We will cover

pointers in Chapter 5.

The story is different for arrays. When the name of an array is used as an argument, the value passed to the

function is the location or address of the beginning of the array - there is no copying of array elements. By

subscripting this value, the function can access and alter any argument of the array. This is the topic of the

next section.

1.9 Character Arrays

The most common type of array in C is the array of characters. To illustrate the use of character arrays and

functions to manipulate them, let's write a program that reads a set of text lines and prints the longest. The

outline is simple enough:

 while (there's another line)

 if (it's longer than the previous longest)

 (save it)

 (save its length)

print longest line

This outline makes it clear that the program divides naturally into pieces. One piece gets a new line, another

saves it, and the rest controls the process.

Since things divide so nicely, it would be well to write them that way too. Accordingly, let us first write a

separate function getline to fetch the next line of input. We will try to make the function useful in other

contexts. At the minimum, getline has to return a signal about possible end of file; a more useful design

would be to return the length of the line, or zero if end of file is encountered. Zero is an acceptable end-of-file

return because it is never a valid line length. Every text line has at least one character; even a line containing

only a newline has length 1.

When we find a line that is longer than the previous longest line, it must be saved somewhere. This suggests a

second function, copy, to copy the new line to a safe place.

Finally, we need a main program to control getline and copy. Here is the result.

 "%s", longest);

 return 0;

 }

 /* getline: read a line into s, return length */

 int getline(char s[],int lim)

 {

 int c, i;

 for (i=0; i < lim-1 && (c=getchar())!=EOF && c!='\n'; ++i)

 s[i] = c;

 if (c == '\n') {

 s[i] = c;

 ++i;

 }

Chapter 1 - A Tutorial Introduction 17

Chapter 1 - A Tutorial Introduction 17

Preview from Notesale.co.uk

Page 29 of 217

are, so we have chosen not to add error checking to it.

Exercise 1-16. Revise the main routine of the longest-line program so it will correctly print the length of

arbitrary long input lines, and as much as possible of the text.

Exercise 1-17. Write a program to print all input lines that are longer than 80 characters.

Exercise 1-18. Write a program to remove trailing blanks and tabs from each line of input, and to delete

entirely blank lines.

Exercise 1-19. Write a function reverse(s) that reverses the character string s. Use it to write a program

that reverses its input a line at a time.

1.10 External Variables and Scope

The variables in main, such as line, longest, etc., are private or local to main. Because they are

declared within main, no other function can have direct access to them. The same is true of the variables in

other functions; for example, the variable i in getline is unrelated to the i in copy. Each local variable in a

function comes into existence only when the function is called, and disappears when the function is exited.

This is why such variables are usually known as automatic variables, following terminology in other

languages. We will use the term automatic henceforth to refer to these local variables. (Chapter 4 discusses

the static storage class, in which local variables do retain their values between calls.)

Because automatic variables come and go with function invocation, they do not retain their values from one

call to the next, and must be explicitly set upon each entry. If they are not set, they will contain garbage.

As an alternative to automatic variables, it is possible to define variables that are external to all functions, that

is, variables that can be accessed by name by any function. (This mechanism is rather like Fortran COMMON

or Pascal variables declared in the outermost block.) Because external variables are globally accessible, they

can be used instead of argument lists to communicate data between functions. Furthermore, because external

variables remain in existence permanently, rather than appearing and disappearing as functions are called and

exited, they retain their values even after the functions that set them have returned.

An external variable must be defined, exactly once, outside of any function; this sets aside storage for it. The

variable must also be declared in each function that wants to access it; this states the type of the variable. The

declaration may be an explicit extern statement or may be implicit from context. To make the discussion

concrete, let us rewrite the longest-line program with line, longest, and max as external variables. This

requires changing the calls, declarations, and bodies of all three functions.

 "%s", longest);

 return 0;

 }

 /* getline: specialized version */

 int getline(void)

 {

 int c, i;

 extern char line[];

 for (i = 0; i < MAXLINE - 1

 && (c=getchar)) != EOF && c != '\n'; ++i)

 line[i] = c;

 if (c == '\n') {

 line[i] = c;

 ++i;

 }

 line[i] = '\0';

Chapter 1 - A Tutorial Introduction 19

Chapter 1 - A Tutorial Introduction 19

Preview from Notesale.co.uk

Page 31 of 217

normally be the natural size for a particular machine. short is often 16 bits long, and int either 16 or 32

bits. Each compiler is free to choose appropriate sizes for its own hardware, subject only to the the restriction

that shorts and ints are at least 16 bits, longs are at least 32 bits, and short is no longer than int, which

is no longer than long.

The qualifier signed or unsigned may be applied to char or any integer. unsigned numbers are

always positive or zero, and obey the laws of arithmetic modulo 2n, where n is the number of bits in the type.

So, for instance, if chars are 8 bits, unsigned char variables have values between 0 and 255, while

signed chars have values between -128 and 127 (in a two's complement machine.) Whether plain chars

are signed or unsigned is machine-dependent, but printable characters are always positive.

The type long double specifies extended-precision floating point. As with integers, the sizes of

floating-point objects are implementation-defined; float, double and long double could represent

one, two or three distinct sizes.

The standard headers <limits.h> and <float.h> contain symbolic constants for all of these sizes, along

with other properties of the machine and compiler. These are discussed in Appendix B.

Exercise 2-1. Write a program to determine the ranges of char, short, int, and long variables, both

signed and unsigned, by printing appropriate values from standard headers and by direct computation.

Harder if you compute them: determine the ranges of the various floating-point types.

2.3 Constants

An integer constant like 1234 is an int. A long constant is written with a terminal l (ell) or L, as in

123456789L; an integer constant too big to fit into an int will also be taken as a long. Unsigned constants

are written with a terminal u or U, and the suffix ul or UL indicates unsigned long.

Floating-point constants contain a decimal point (123.4) or an exponent (1e-2) or both; their type is

double, unless suffixed. The suffixes f or F indicate a float constant; l or L indicate a long double.

The value of an integer can be specified in octal or hexadecimal instead of decimal. A leading 0 (zero) on an

integer constant means octal; a leading 0x or 0X means hexadecimal. For example, decimal 31 can be written

as 037 in octal and 0x1f or 0x1F in hex. Octal and hexadecimal constants may also be followed by L to

make them long and U to make them unsigned: 0XFUL is an unsigned long constant with value 15

decimal.

A character constant is an integer, written as one character within single quotes, such as 'x'. The

value of a character constant is the numeric value of the character in the machine's character set. For example,

in the ASCII character set the character constant '0' has the value 48, which is unrelated to the numeric

value 0. If we write '0' instead of a numeric value like 48 that depends on the character set, the program is

independent of the particular value and easier to read. Character constants participate in numeric operations

just as any other integers, although they are most often used in comparisons with other characters.

Certain characters can be represented in character and string constants by escape sequences like \n (newline);

these sequences look like two characters, but represent only one. In addition, an arbitrary byte-sized bit

pattern can be specified by

 '\ooo'

where ooo is one to three octal digits (0...7) or by

 '\xhh'

2 Chapter 2 - Types, Operators and Expressions

2 Chapter 2 - Types, Operators and Expressions

Preview from Notesale.co.uk

Page 35 of 217

Another example of a similar construction comes from the getline function that we wrote in Chapter 1,

where we can replace

 if (c == '\n') {

 s[i] = c;

 ++i;

 }

by the more compact

 if (c == '\n')

 s[i++] = c;

As a third example, consider the standard function strcat(s,t), which concatenates the string t to the

end of string s. strcat assumes that there is enough space in s to hold the combination. As we have written

it, strcat returns no value; the standard library version returns a pointer to the resulting string.

 /* strcat: concatenate t to end of s; s must be big enough */

 void strcat(char s[], char t[])

 {

 int i, j;

 i = j = 0;

 while (s[i] != '\0') /* find end of s */

 i++;

 while ((s[i++] = t[j++]) != '\0') /* copy t */

 ;

 }

As each member is copied from t to s, the postfix ++ is applied to both i and j to make sure that they are in

position for the next pass through the loop.

Exercise 2-4. Write an alternative version of squeeze(s1,s2) that deletes each character in s1 that

matches any character in the string s2.

Exercise 2-5. Write the function any(s1,s2), which returns the first location in a string s1 where any

character from the string s2 occurs, or -1 if s1 contains no characters from s2. (The standard library

function strpbrk does the same job but returns a pointer to the location.)

2.9 Bitwise Operators

C provides six operators for bit manipulation; these may only be applied to integral operands, that is, char,

short, int, and long, whether signed or unsigned.

& bitwise AND

| bitwise inclusive OR

^ bitwise exclusive OR

<< left shift

>> right shift

~ one's complement (unary)

The bitwise AND operator & is often used to mask off some set of bits, for example

 n = n & 0177;

sets to zero all but the low-order 7 bits of n.

Chapter 2 - Types, Operators and Expressions 11

Chapter 2 - Types, Operators and Expressions 11

Preview from Notesale.co.uk

Page 44 of 217

The statement is executed, then expression is evaluated. If it is true, statement is evaluated again, and so on.

When the expression becomes false, the loop terminates. Except for the sense of the test, do-while is

equivalent to the Pascal repeat-until statement.

Experience shows that do-while is much less used than while and for. Nonetheless, from time to time it

is valuable, as in the following function itoa, which converts a number to a character string (the inverse of

atoi). The job is slightly more complicated than might be thought at first, because the easy methods of

generating the digits generate them in the wrong order. We have chosen to generate the string backwards, then

reverse it.

 /* itoa: convert n to characters in s */

 void itoa(int n, char s[])

 {

 int i, sign;

 if ((sign = n) < 0) /* record sign */

 n = -n; /* make n positive */

 i = 0;

 do { /* generate digits in reverse order */

 s[i++] = n % 10 + '0'; /* get next digit */

 } while ((n /= 10) > 0); /* delete it */

 if (sign < 0)

 s[i++] = '-';

 s[i] = '\0';

 reverse(s);

 }

The do-while is necessary, or at least convenient, since at least one character must be installed in the array

s, even if n is zero. We also used braces around the single statement that makes up the body of the

do-while, even though they are unnecessary, so the hasty reader will not mistake the while part for the

beginning of a while loop.

Exercise 3-4. In a two's complement number representation, our version of itoa does not handle the largest

negative number, that is, the value of n equal to -(2wordsize-1). Explain why not. Modify it to print that value

correctly, regardless of the machine on which it runs.

Exercise 3-5. Write the function itob(n,s,b) that converts the integer n into a base b character

representation in the string s. In particular, itob(n,s,16) formats s as a hexadecimal integer in s.

Exercise 3-6. Write a version of itoa that accepts three arguments instead of two. The third argument is a

minimum field width; the converted number must be padded with blanks on the left if necessary to make it

wide enough.

3.7 Break and Continue

It is sometimes convenient to be able to exit from a loop other than by testing at the top or bottom. The

break statement provides an early exit from for, while, and do, just as from switch. A break causes

the innermost enclosing loop or switch to be exited immediately.

The following function, trim, removes trailing blanks, tabs and newlines from the end of a string, using a

break to exit from a loop when the rightmost non-blank, non-tab, non-newline is found.

 /* trim: remove trailing blanks, tabs, newlines */

 int trim(char s[])

 {

 int n;

 for (n = strlen(s)-1; n >= 0; n--)

Chapter 3 - Control Flow 7

Chapter 3 - Control Flow 7

Preview from Notesale.co.uk

Page 56 of 217

 if (s[n] != ' ' && s[n] != '\t' && s[n] != '\n')

 break;

 s[n+1] = '\0';

 return n;

 }

strlen returns the length of the string. The for loop starts at the end and scans backwards looking for the

first character that is not a blank or tab or newline. The loop is broken when one is found, or when n becomes

negative (that is, when the entire string has been scanned). You should verify that this is correct behavior even

when the string is empty or contains only white space characters.

The continue statement is related to break, but less often used; it causes the next iteration of the

enclosing for, while, or do loop to begin. In the while and do, this means that the test part is executed

immediately; in the for, control passes to the increment step. The continue statement applies only to

loops, not to switch. A continue inside a switch inside a loop causes the next loop iteration.

As an example, this fragment processes only the non-negative elements in the array a; negative values are

skipped.

 for (i = 0; i < n; i++)

 if (a[i] < 0) /* skip negative elements */

 continue;

 ... /* do positive elements */

The continue statement is often used when the part of the loop that follows is complicated, so that

reversing a test and indenting another level would nest the program too deeply.

3.8 Goto and labels

C provides the infinitely-abusable goto statement, and labels to branch to. Formally, the goto statement is

never necessary, and in practice it is almost always easy to write code without it. We have not used goto in

this book.

Nevertheless, there are a few situations where gotos may find a place. The most common is to abandon

processing in some deeply nested structure, such as breaking out of two or more loops at once. The break

statement cannot be used directly since it only exits from the innermost loop. Thus:

 for (...)

 for (...) {

 ...

 if (disaster)

 goto error;

 }

 ...

 error:

 /* clean up the mess */

This organization is handy if the error-handling code is non-trivial, and if errors can occur in several places.

A label has the same form as a variable name, and is followed by a colon. It can be attached to any statement

in the same function as the goto. The scope of a label is the entire function.

As another example, consider the problem of determining whether two arrays a and b have an element in

common. One possibility is

 for (i = 0; i < n; i++)

 for (j = 0; j < m; j++)

 if (a[i] == b[j])

8 Chapter 3 - Control Flow

8 Chapter 3 - Control Flow

Preview from Notesale.co.uk

Page 57 of 217

4.2 Functions Returning Non-integers

So far our examples of functions have returned either no value (void) or an int. What if a function must

return some other type? many numerical functions like sqrt, sin, and cos return double; other

specialized functions return other types. To illustrate how to deal with this, let us write and use the function

atof(s), which converts the string s to its double-precision floating-point equivalent. atof if an extension

of atoi, which we showed versions of in Chapters 2 and 3. It handles an optional sign and decimal point, and

the presence or absence of either part or fractional part. Our version is not a high-quality input conversion

routine; that would take more space than we care to use. The standard library includes an atof; the header

<stdlib.h> declares it.

First, atof itself must declare the type of value it returns, since it is not int. The type name precedes the

function name:

 "\t%g\n", sum += atof(line));

 return 0;

 }

The declaration

 double sum, atof(char []);

says that sum is a double variable, and that atof is a function that takes one char[] argument and

returns a double.

The function atof must be declared and defined consistently. If atof itself and the call to it in main have

inconsistent types in the same source file, the error will be detected by the compiler. But if (as is more likely)

atof were compiled separately, the mismatch would not be detected, atof would return a double that

main would treat as an int, and meaningless answers would result.

In the light of what we have said about how declarations must match definitions, this might seem surprising.

The reason a mismatch can happen is that if there is no function prototype, a function is implicitly declared by

its first appearance in an expression, such as

 sum += atof(line)

If a name that has not been previously declared occurs in an expression and is followed by a left parentheses,

it is declared by context to be a function name, the function is assumed to return an int, and nothing is

assumed about its arguments. Furthermore, if a function declaration does not include arguments, as in

 double atof();

that too is taken to mean that nothing is to be assumed about the arguments of atof; all parameter checking

is turned off. This special meaning of the empty argument list is intended to permit older C programs to

compile with new compilers. But it's a bad idea to use it with new C programs. If the function takes

arguments, declare them; if it takes no arguments, use void.

Given atof, properly declared, we could write atoi (convert a string to int) in terms of it:

 /* atoi: convert string s to integer using atof */

 int atoi(char s[])

 {

 double atof(char s[]);

 return (int) atof(s);

 }

4 Chapter 4 - Functions and Program Structure

4 Chapter 4 - Functions and Program Structure

Preview from Notesale.co.uk

Page 62 of 217

These remarks are true regardless of the type or size of the variables in the array a. The meaning of ``adding 1

to a pointer,'' and by extension, all pointer arithmetic, is that pa+1 points to the next object, and pa+i points

to the i-th object beyond pa.

The correspondence between indexing and pointer arithmetic is very close. By definition, the value of a

variable or expression of type array is the address of element zero of the array. Thus after the assignment

 pa = &a[0];

pa and a have identical values. Since the name of an array is a synonym for the location of the initial element,

the assignment pa=&a[0] can also be written as

 pa = a;

Rather more surprising, at first sight, is the fact that a reference to a[i] can also be written as *(a+i). In

evaluating a[i], C converts it to *(a+i) immediately; the two forms are equivalent. Applying the operator

& to both parts of this equivalence, it follows that &a[i] and a+i are also identical: a+i is the address of the

i-th element beyond a. As the other side of this coin, if pa is a pointer, expressions might use it with a

subscript; pa[i] is identical to *(pa+i). In short, an array-and-index expression is equivalent to one

written as a pointer and offset.

There is one difference between an array name and a pointer that must be kept in mind. A pointer is a

variable, so pa=a and pa++ are legal. But an array name is not a variable; constructions like a=pa and a++

are illegal.

When an array name is passed to a function, what is passed is the location of the initial element. Within the

called function, this argument is a local variable, and so an array name parameter is a pointer, that is, a

variable containing an address. We can use this fact to write another version of strlen, which computes the

length of a string.

 /* strlen: return length of string s */

 int strlen(char *s)

 {

 int n;

 for (n = 0; *s != '\0', s++)

 n++;

 return n;

 }

Since s is a pointer, incrementing it is perfectly legal; s++ has no effect on the character string in the function

that called strlen, but merely increments strlen's private copy of the pointer. That means that calls like

 strlen("hello, world"); /* string constant */

 strlen(array); /* char array[100]; */

6 Chapter 5 - Pointers and Arrays

6 Chapter 5 - Pointers and Arrays

Preview from Notesale.co.uk

Page 83 of 217

The easiest implementation is to have alloc hand out pieces of a large character array that we will call

allocbuf. This array is private to alloc and afree. Since they deal in pointers, not array indices, no

other routine need know the name of the array, which can be declared static in the source file containing

alloc and afree, and thus be invisible outside it. In practical implementations, the array may well not even

have a name; it might instead be obtained by calling malloc or by asking the operating system for a pointer

to some unnamed block of storage.

The other information needed is how much of allocbuf has been used. We use a pointer, called allocp,

that points to the next free element. When alloc is asked for n characters, it checks to see if there is enough

room left in allocbuf. If so, alloc returns the current value of allocp (i.e., the beginning of the free

block), then increments it by n to point to the next free area. If there is no room, alloc returns zero.

afree(p) merely sets allocp to p if p is inside allocbuf.

 #define ALLOCSIZE 10000 /* size of available space */

 static char allocbuf[ALLOCSIZE]; /* storage for alloc */

 static char *allocp = allocbuf; /* next free position */

 char *alloc(int n) /* return pointer to n characters */

 {

 if (allocbuf + ALLOCSIZE - allocp >= n) { /* it fits */

 allocp += n;

 return allocp - n; /* old p */

 } else /* not enough room */

 return 0;

 }

 void afree(char *p) /* free storage pointed to by p */

 {

 if (p >= allocbuf && p < allocbuf + ALLOCSIZE)

 allocp = p;

 }

In general a pointer can be initialized just as any other variable can, though normally the only meaningful

values are zero or an expression involving the address of previously defined data of appropriate type. The

declaration

 static char *allocp = allocbuf;

defines allocp to be a character pointer and initializes it to point to the beginning of allocbuf, which is

the next free position when the program starts. This could also have been written

8 Chapter 5 - Pointers and Arrays

8 Chapter 5 - Pointers and Arrays

Preview from Notesale.co.uk

Page 85 of 217

is counted down.

With input and output under control, we can proceed to sorting. The quicksort from Chapter 4 needs minor

changes: the declarations have to be modified, and the comparison operation must be done by calling

strcmp. The algorithm remains the same, which gives us some confidence that it will still work.

 /* qsort: sort v[left]...v[right] into increasing order */

 void qsort(char *v[], int left, int right)

 {

 int i, last;

 void swap(char *v[], int i, int j);

 if (left >= right) /* do nothing if array contains */

 return; /* fewer than two elements */

 swap(v, left, (left + right)/2);

 last = left;

 for (i = left+1; i <= right; i++)

 if (strcmp(v[i], v[left]) < 0)

 swap(v, ++last, i);

 swap(v, left, last);

 qsort(v, left, last-1);

 qsort(v, last+1, right);

 }

Similarly, the swap routine needs only trivial changes:

 /* swap: interchange v[i] and v[j] */

 void swap(char *v[], int i, int j)

 {

 char *temp;

 temp = v[i];

 v[i] = v[j];

 v[j] = temp;

 }

Since any individual element of v (alias lineptr) is a character pointer, temp must be also, so one can be

copied to the other.

Exercise 5-7. Rewrite readlines to store lines in an array supplied by main, rather than calling alloc to

maintain storage. How much faster is the program?

5.7 Multi-dimensional Arrays

C provides rectangular multi-dimensional arrays, although in practice they are much less used than arrays of

pointers. In this section, we will show some of their properties.

Consider the problem of date conversion, from day of the month to day of the year and vice versa. For

example, March 1 is the 60th day of a non-leap year, and the 61st day of a leap year. Let us define two

functions to do the conversions: day_of_year converts the month and day into the day of the year, and

month_day converts the day of the year into the month and day. Since this latter function computes two

values, the month and day arguments will be pointers:

 month_day(1988, 60, &m, &d)

sets m to 2 and d to 29 (February 29th).

These functions both need the same information, a table of the number of days in each month (``thirty days

hath September ...''). Since the number of days per month differs for leap years and non-leap years, it's easier

Chapter 5 - Pointers and Arrays 15

Chapter 5 - Pointers and Arrays 15

Preview from Notesale.co.uk

Page 92 of 217

This shows that the format argument of printf can be an expression too.

As a second example, let us make some enhancements to the pattern-finding program from Section 4.1. If you

recall, we wired the search pattern deep into the program, an obviously unsatisfactory arrangement. Following

the lead of the UNIX program grep, let us enhance the program so the pattern to be matched is specified by

the first argument on the command line.

 #include <stdio.h>

 #include <string.h>

 #define MAXLINE 1000

 int getline(char *line, int max);

 /* find: print lines that match pattern from 1st arg */

 main(int argc, char *argv[])

 {

 char line[MAXLINE];

 int found = 0;

 if (argc != 2)

 printf("Usage: find pattern\n");

 else

 while (getline(line, MAXLINE) > 0)

 if (strstr(line, argv[1]) != NULL) {

 printf("%s", line);

 found++;

 }

 return found;

 }

The standard library function strstr(s,t) returns a pointer to the first occurrence of the string t in the

string s, or NULL if there is none. It is declared in <string.h>.

The model can now be elaborated to illustrate further pointer constructions. Suppose we want to allow two

optional arguments. One says ``print all the lines except those that match the pattern;'' the second says

``precede each printed line by its line number.''

A common convention for C programs on UNIX systems is that an argument that begins with a minus sign

introduces an optional flag or parameter. If we choose -x (for ``except'') to signal the inversion, and -n

(``number'') to request line numbering, then the command

 find -x -npattern

will print each line that doesn't match the pattern, preceded by its line number.

Optional arguments should be permitted in any order, and the rest of the program should be independent of

the number of arguments that we present. Furthermore, it is convenient for users if option arguments can be

combined, as in

 find -nx pattern

Here is the program:

 #include <stdio.h>

 #include <string.h>

 #define MAXLINE 1000

 int getline(char *line, int max);

 /* find: print lines that match pattern from 1st arg */

20 Chapter 5 - Pointers and Arrays

20 Chapter 5 - Pointers and Arrays

Preview from Notesale.co.uk

Page 97 of 217

is syntactically analogous to

 int x, y, z;

in the sense that each statement declares x, y and z to be variables of the named type and causes space to be

set aside for them.

A structure declaration that is not followed by a list of variables reserves no storage; it merely describes a

template or shape of a structure. If the declaration is tagged, however, the tag can be used later in definitions

of instances of the structure. For example, given the declaration of point above,

 struct point pt;

defines a variable pt which is a structure of type struct point. A structure can be initialized by

following its definition with a list of initializers, each a constant expression, for the members:

 struct maxpt = { 320, 200 };

An automatic structure may also be initialized by assignment or by calling a function that returns a structure

of the right type.

A member of a particular structure is referred to in an expression by a construction of the form

structure-name.member

The structure member operator ``.'' connects the structure name and the member name. To print the

coordinates of the point pt, for instance,

 printf("%d,%d", pt.x, pt.y);

or to compute the distance from the origin (0,0) to pt,

 double dist, sqrt(double);

 dist = sqrt((double)pt.x * pt.x + (double)pt.y * pt.y);

Structures can be nested. One representation of a rectangle is a pair of points that denote the diagonally

opposite corners:

 struct rect {

 struct point pt1;

 struct point pt2;

 };

The rect structure contains two point structures. If we declare screen as

2 Chapter 6 - Structures

2 Chapter 6 - Structures

Preview from Notesale.co.uk

Page 108 of 217

 { "break", 0 },

 { "case", 0 },

 ...

but inner braces are not necessary when the initializers are simple variables or character strings, and when all

are present. As usual, the number of entries in the array keytab will be computed if the initializers are

present and the [] is left empty.

The keyword counting program begins with the definition of keytab. The main routine reads the input by

repeatedly calling a function getword that fetches one word at a time. Each word is looked up in keytab

with a version of the binary search function that we wrote in Chapter 3. The list of keywords must be sorted in

increasing order in the table.

 "%4d %s\n",

 keytab[n].count, keytab[n].word);

 return 0;

 }

 /* binsearch: find word in tab[0]...tab[n-1] */

 int binsearch(char *word, struct key tab[], int n)

 {

 int cond;

 int low, high, mid;

 low = 0;

 high = n - 1;

 while (low <= high) {

 mid = (low+high) / 2;

 if ((cond = strcmp(word, tab[mid].word)) < 0)

 high = mid - 1;

 else if (cond > 0)

 low = mid + 1;

 else

 return mid;

 }

 return -1;

 }

We will show the function getword in a moment; for now it suffices to say that each call to getword finds

a word, which is copied into the array named as its first argument.

The quantity NKEYS is the number of keywords in keytab. Although we could count this by hand, it's a lot

easier and safer to do it by machine, especially if the list is subject to change. One possibility would be to

terminate the list of initializers with a null pointer, then loop along keytab until the end is found.

But this is more than is needed, since the size of the array is completely determined at compile time. The size

of the array is the size of one entry times the number of entries, so the number of entries is just

size of keytab / size of struct key

C provides a compile-time unary operator called sizeof that can be used to compute the size of any object.

The expressions

 sizeof object

and

 sizeof (type name)

6 Chapter 6 - Structures

6 Chapter 6 - Structures

Preview from Notesale.co.uk

Page 112 of 217

yield an integer equal to the size of the specified object or type in bytes. (Strictly, sizeof produces an

unsigned integer value whose type, size_t, is defined in the header <stddef.h>.) An object can be a

variable or array or structure. A type name can be the name of a basic type like int or double, or a derived

type like a structure or a pointer.

In our case, the number of keywords is the size of the array divided by the size of one element. This

computation is used in a #define statement to set the value of NKEYS:

 #define NKEYS (sizeof keytab / sizeof(struct key))

Another way to write this is to divide the array size by the size of a specific element:

 #define NKEYS (sizeof keytab / sizeof(keytab[0]))

This has the advantage that it does not need to be changed if the type changes.

A sizeof can not be used in a #if line, because the preprocessor does not parse type names. But the

expression in the #define is not evaluated by the preprocessor, so the code here is legal.

Now for the function getword. We have written a more general getword than is necessary for this

program, but it is not complicated. getword fetches the next ``word'' from the input, where a word is either a

string of letters and digits beginning with a letter, or a single non-white space character. The function value is

the first character of the word, or EOF for end of file, or the character itself if it is not alphabetic.

 /* getword: get next word or character from input */

 int getword(char *word, int lim)

 {

 int c, getch(void);

 void ungetch(int);

 char *w = word;

 while (isspace(c = getch()))

 ;

 if (c != EOF)

 *w++ = c;

 if (!isalpha(c)) {

 *w = '\0';

 return c;

 }

 for (; --lim > 0; w++)

 if (!isalnum(*w = getch())) {

 ungetch(*w);

 break;

 }

 *w = '\0';

 return word[0];

 }

getword uses the getch and ungetch that we wrote in Chapter 4. When the collection of an

alphanumeric token stops, getword has gone one character too far. The call to ungetch pushes that

character back on the input for the next call. getword also uses isspace to skip whitespace, isalpha to

identify letters, and isalnum to identify letters and digits; all are from the standard header <ctype.h>.

Exercise 6-1. Our version of getword does not properly handle underscores, string constants, comments, or

preprocessor control lines. Write a better version.

Chapter 6 - Structures 7

Chapter 6 - Structures 7

Preview from Notesale.co.uk

Page 113 of 217

6.4 Pointers to Structures

To illustrate some of the considerations involved with pointers to and arrays of structures, let us write the

keyword-counting program again, this time using pointers instead of array indices.

The external declaration of keytab need not change, but main and binsearch do need modification.

 "%4d %s\n", p->count, p->word);

 return 0;

 }

 /* binsearch: find word in tab[0]...tab[n-1] */

 struct key *binsearch(char *word, struck key *tab, int n)

 {

 int cond;

 struct key *low = &tab[0];

 struct key *high = &tab[n];

 struct key *mid;

 while (low < high) {

 mid = low + (high-low) / 2;

 if ((cond = strcmp(word, mid->word)) < 0)

 high = mid;

 else if (cond > 0)

 low = mid + 1;

 else

 return mid;

 }

 return NULL;

 }

There are several things worthy of note here. First, the declaration of binsearch must indicate that it

returns a pointer to struct key instead of an integer; this is declared both in the function prototype and in

binsearch. If binsearch finds the word, it returns a pointer to it; if it fails, it returns NULL.

Second, the elements of keytab are now accessed by pointers. This requires significant changes in

binsearch.

The initializers for low and high are now pointers to the beginning and just past the end of the table.

The computation of the middle element can no longer be simply

 mid = (low+high) / 2 /* WRONG */

because the addition of pointers is illegal. Subtraction is legal, however, so high-low is the number of

elements, and thus

 mid = low + (high-low) / 2

sets mid to the element halfway between low and high.

The most important change is to adjust the algorithm to make sure that it does not generate an illegal pointer

or attempt to access an element outside the array. The problem is that &tab[-1] and &tab[n] are both

outside the limits of the array tab. The former is strictly illegal, and it is illegal to dereference the latter. The

language definition does guarantee, however, that pointer arithmetic that involves the first element beyond the

end of an array (that is, &tab[n]) will work correctly.

In main we wrote

8 Chapter 6 - Structures

8 Chapter 6 - Structures

Preview from Notesale.co.uk

Page 114 of 217

To show that there is nothing special about functions like fgets and fputs, here they are, copied from the

standard library on our system:

 /* fgets: get at most n chars from iop */

 char *fgets(char *s, int n, FILE *iop)

 {

 register int c;

 register char *cs;

 cs = s;

 while (--n > 0 && (c = getc(iop)) != EOF)

 if ((*cs++ = c) == '\n')

 break;

 *cs = '\0';

 return (c == EOF && cs == s) ? NULL : s;

 }

 /* fputs: put string s on file iop */

 int fputs(char *s, FILE *iop)

 {

 int c;

 while (c = *s++)

 putc(c, iop);

 return ferror(iop) ? EOF : 0;

 }

For no obvious reason, the standard specifies different return values for ferror and fputs.

It is easy to implement our getline from fgets:

 /* getline: read a line, return length */

 int getline(char *line, int max)

 {

 if (fgets(line, max, stdin) == NULL)

 return 0;

 else

 return strlen(line);

 }

Exercise 7-6. Write a program to compare two files, printing the first line where they differ.

Exercise 7-7. Modify the pattern finding program of Chapter 5 to take its input from a set of named files or, if

no files are named as arguments, from the standard input. Should the file name be printed when a matching

line is found?

Exercise 7-8. Write a program to print a set of files, starting each new one on a new page, with a title and a

running page count for each file.

7.8 Miscellaneous Functions

The standard library provides a wide variety of functions. This section is a brief synopsis of the most useful.

More details and many other functions can be found in Appendix B.

7.8.1 String Operations

We have already mentioned the string functions strlen, strcpy, strcat, and strcmp, found in

<string.h>. In the following, s and t are char *'s, and c and n are ints.

Chapter 7 - Input and Output 11

Chapter 7 - Input and Output 11

Preview from Notesale.co.uk

Page 135 of 217

 #define S_IFCHR 0020000 /* character special */

 #define S_IFBLK 0060000 /* block special */

 #define S_IFREG 0010000 /* regular */

 /* ... */

Now we are ready to write the program fsize. If the mode obtained from stat indicates that a file is not a

directory, then the size is at hand and can be printed directly. If the name is a directory, however, then we

have to process that directory one file at a time; it may in turn contain sub-directories, so the process is

recursive.

The main routine deals with command-line arguments; it hands each argument to the function fsize.

 #include <stdio.h>

 #include <string.h>

 #include "syscalls.h"

 #include <fcntl.h> /* flags for read and write */

 #include <sys/types.h> /* typedefs */

 #include <sys/stat.h> /* structure returned by stat */

 #include "dirent.h"

 void fsize(char *)

 /* print file name */

 main(int argc, char **argv)

 {

 if (argc == 1) /* default: current directory */

 fsize(".");

 else

 while (--argc > 0)

 fsize(*++argv);

 return 0;

 }

The function fsize prints the size of the file. If the file is a directory, however, fsize first calls dirwalk

to handle all the files in it. Note how the flag names S_IFMT and S_IFDIR are used to decide if the file is a

directory. Parenthesization matters, because the precedence of & is lower than that of ==.

 int stat(char *, struct stat *);

 void dirwalk(char *, void (*fcn)(char *));

 /* fsize: print the name of file "name" */

 void fsize(char *name)

 {

 struct stat stbuf;

 if (stat(name, &stbuf) == -1) {

 fprintf(stderr, "fsize: can't access %s\n", name);

 return;

 }

 if ((stbuf.st_mode & S_IFMT) == S_IFDIR)

 dirwalk(name, fsize);

 printf("%8ld %s\n", stbuf.st_size, name);

 }

The function dirwalk is a general routine that applies a function to each file in a directory. It opens the

directory, loops through the files in it, calling the function on each, then closes the directory and returns. Since

fsize calls dirwalk on each directory, the two functions call each other recursively.

 #define MAX_PATH 1024

 /* dirwalk: apply fcn to all files in dir */

 void dirwalk(char *dir, void (*fcn)(char *))

10 Chapter 8 - The UNIX System Interface

10 Chapter 8 - The UNIX System Interface

Preview from Notesale.co.uk

Page 148 of 217

 unsigned size; /* size of this block */

 } s;

 Align x; /* force alignment of blocks */

 };

 typedef union header Header;

The Align field is never used; it just forces each header to be aligned on a worst-case boundary.

In malloc, the requested size in characters is rounded up to the proper number of header-sized units; the

block that will be allocated contains one more unit, for the header itself, and this is the value recorded in the

size field of the header. The pointer returned by malloc points at the free space, not at the header itself.

The user can do anything with the space requested, but if anything is written outside of the allocated space the

list is likely to be scrambled.

The size field is necessary because the blocks controlled by malloc need not be contiguous - it is not

possible to compute sizes by pointer arithmetic.

The variable base is used to get started. If freep is NULL, as it is at the first call of malloc, then a

degenerate free list is created; it contains one block of size zero, and points to itself. In any case, the free list is

then searched. The search for a free block of adequate size begins at the point (freep) where the last block

was found; this strategy helps keep the list homogeneous. If a too-big block is found, the tail end is returned to

the user; in this way the header of the original needs only to have its size adjusted. In all cases, the pointer

returned to the user points to the free space within the block, which begins one unit beyond the header.

 static Header base; /* empty list to get started */

 static Header *freep = NULL; /* start of free list */

 /* malloc: general-purpose storage allocator */

 void *malloc(unsigned nbytes)

 {

 Header *p, *prevp;

 Header *moreroce(unsigned);

 unsigned nunits;

 nunits = (nbytes+sizeof(Header)-1)/sizeof(header) + 1;

 if ((prevp = freep) == NULL) { /* no free list yet */

 base.s.ptr = freeptr = prevptr = &base;

 base.s.size = 0;

 }

 for (p = prevp->s.ptr; ; prevp = p, p = p->s.ptr) {

 if (p->s.size >= nunits) { /* big enough */

 if (p->s.size == nunits) /* exactly */

 prevp->s.ptr = p->s.ptr;

 else { /* allocate tail end */

 p->s.size -= nunits;

 p += p->s.size;

14 Chapter 8 - The UNIX System Interface

14 Chapter 8 - The UNIX System Interface

Preview from Notesale.co.uk

Page 152 of 217

A.7.3.3 Structure References

A postfix expression followed by a dot followed by an identifier is a postfix expression. The first operand

expression must be a structure or a union, and the identifier must name a member of the structure or union.

The value is the named member of the structure or union, and its type is the type of the member. The

expression is an lvalue if the first expression is an lvalue, and if the type of the second expression is not an

array type.

A postfix expression followed by an arrow (built from - and >) followed by an identifier is a postfix

expression. The first operand expression must be a pointer to a structure or union, and the identifier must

name a member of the structure or union. The result refers to the named member of the structure or union to

which the pointer expression points, and the type is the type of the member; the result is an lvalue if the type

is not an array type.

Thus the expression E1->MOS is the same as (*E1).MOS. Structures and unions are discussed in Par.A.8.3.

In the first edition of this book, it was already the rule that a member name in such an expression had to belong to the

structure or union mentioned in the postfix expression; however, a note admitted that this rule was not firmly enforced.

Recent compilers, and ANSI, do enforce it.

A.7.3.4 Postfix Incrementation

A postfix expression followed by a ++ or -- operator is a postfix expression. The value of the expression is

the value of the operand. After the value is noted, the operand is incremented ++ or decremented -- by 1. The

operand must be an lvalue; see the discussion of additive operators (Par.A.7.7) and assignment (Par.A.7.17)

for further constraints on the operand and details of the operation. The result is not an lvalue.

A.7.4 Unary Operators

Expressions with unary operators group right-to-left.

unary-expression:

postfix expression

++unary expression

--unary expression

unary-operator cast-expression

sizeof unary-expression

sizeof(type-name)

unary operator: one of

& * + - ~ !

A.7.4.1 Prefix Incrementation Operators

A unary expression followed by a ++ or -- operator is a unary expression. The operand is incremented ++ or

decremented -- by 1. The value of the expression is the value after the incrementation (decrementation). The

operand must be an lvalue; see the discussion of additive operators (Par.A.7.7) and assignment (Par.A.7.17)

for further constraints on the operands and details of the operation. The result is not an lvalue.

A.7.4.2 Address Operator

The unary operator & takes the address of its operand. The operand must be an lvalue referring neither to a

bit-field nor to an object declared as register, or must be of function type. The result is a pointer to the

object or function referred to by the lvalue. If the type of the operand is T, the type of the result is ``pointer to

T.''

Appendix A - Reference Manual 11

Appendix A - Reference Manual 11

Preview from Notesale.co.uk

Page 164 of 217

type specifier:

void

char

short

int

long

float

double

signed

unsigned

struct-or-union-specifier

enum-specifier

typedef-name

At most one of the words long or short may be specified together with int; the meaning is the same if

int is not mentioned. The word long may be specified together with double. At most one of signed or

unsigned may be specified together with int or any of its short or long varieties, or with char. Either

may appear alone in which case int is understood. The signed specifier is useful for forcing char objects

to carry a sign; it is permissible but redundant with other integral types.

Otherwise, at most one type-specifier may be given in a declaration. If the type-specifier is missing from a

declaration, it is taken to be int.

Types may also be qualified, to indicate special properties of the objects being declared.

type-qualifier:

const

volatile

Type qualifiers may appear with any type specifier. A const object may be initialized, but not thereafter

assigned to. There are no implementation-dependent semantics for volatile objects.

The const and volatile properties are new with the ANSI standard. The purpose of const is to announce objects

that may be placed in read-only memory, and perhaps to increase opportunities for optimization. The purpose of

volatile is to force an implementation to suppress optimization that could otherwise occur. For example, for a machine

with memory-mapped input/output, a pointer to a device register might be declared as a pointer to volatile, in order to

prevent the compiler from removing apparently redundant references through the pointer. Except that it should diagnose

explicit attempts to change const objects, a compiler may ignore these qualifiers.

A.8.3 Structure and Union Declarations

A structure is an object consisting of a sequence of named members of various types. A union is an object that

contains, at different times, any of several members of various types. Structure and union specifiers have the

same form.

struct-or-union-specifier:

struct-or-union identifieropt{ struct-declaration-list }

struct-or-union identifier

struct-or-union:

struct

union

A struct-declaration-list is a sequence of declarations for the members of the structure or union:

Appendix A - Reference Manual 19

Appendix A - Reference Manual 19

Preview from Notesale.co.uk

Page 172 of 217

struct-declaration-list:

struct declaration

struct-declaration-list struct declaration

struct-declaration: specifier-qualifier-list struct-declarator-list;

specifier-qualifier-list:

type-specifier specifier-qualifier-listopt

type-qualifier specifier-qualifier-listopt

struct-declarator-list:

struct-declarator

struct-declarator-list , struct-declarator

Usually, a struct-declarator is just a declarator for a member of a structure or union. A structure member may

also consist of a specified number of bits. Such a member is also called a bit-field; its length is set off from the

declarator for the field name by a colon.

struct-declarator:

declarator declaratoropt : constant-expression

A type specifier of the form

struct-or-union identifier { struct-declaration-list }

declares the identifier to be the tag of the structure or union specified by the list. A subsequent declaration in

the same or an inner scope may refer to the same type by using the tag in a specifier without the list:

struct-or-union identifier

If a specifier with a tag but without a list appears when the tag is not declared, an incomplete type is specified.

Objects with an incomplete structure or union type may be mentioned in contexts where their size is not

needed, for example in declarations (not definitions), for specifying a pointer, or for creating a typedef, but

not otherwise. The type becomes complete on occurrence of a subsequent specifier with that tag, and

containing a declaration list. Even in specifiers with a list, the structure or union type being declared is

incomplete within the list, and becomes complete only at the } terminating the specifier.

A structure may not contain a member of incomplete type. Therefore, it is impossible to declare a structure or

union containing an instance of itself. However, besides giving a name to the structure or union type, tags

allow definition of self-referential structures; a structure or union may contain a pointer to an instance of

itself, because pointers to incomplete types may be declared.

A very special rule applies to declarations of the form

struct-or-union identifier;

that declare a structure or union, but have no declaration list and no declarators. Even if the identifier is a

structure or union tag already declared in an outer scope (Par.A.11.1), this declaration makes the identifier the

tag of a new, incompletely-typed structure or union in the current scope.

This recondite is new with ANSI. It is intended to deal with mutually-recursive structures declared in an inner scope, but

whose tags might already be declared in the outer scope.

A structure or union specifier with a list but no tag creates a unique type; it can be referred to directly only in

the declaration of which it is a part.

20 Appendix A - Reference Manual

20 Appendix A - Reference Manual

Preview from Notesale.co.uk

Page 173 of 217

and the type of the identifier in the declaration T D1 is ``type-modifier T,'' the type of the identifier of D is

``type-modifier type-qualifier-list pointer to T.'' Qualifiers following * apply to pointer itself, rather than to the

object to which the pointer points.

For example, consider the declaration

 int *ap[];

Here, ap[] plays the role of D1; a declaration ``int ap[]'' (below) would give ap the type ``array of int,''

the type-qualifier list is empty, and the type-modifier is ``array of.'' Hence the actual declaration gives ap the

type ``array to pointers to int.''

As other examples, the declarations

 int i, *pi, *const cpi = i

 const int ci = 3, *pci;

declare an integer i and a pointer to an integer pi. The value of the constant pointer cpi may not be

changed; it will always point to the same location, although the value to which it refers may be altered. The

integer ci is constant, and may not be changed (though it may be initialized, as here.) The type of pci is

``pointer to const int,'' and pci itself may be changed to point to another place, but the value to which it

points may not be altered by assigning through pci.

A.8.6.2 Array Declarators

In a declaration T D where D has the form

D1 [constant-expressionopt]

and the type of the identifier in the declaration T D1 is ``type-modifier T,'' the type of the identifier of D is

``type-modifier array of T.'' If the constant-expression is present, it must have integral type, and value greater

than 0. If the constant expression specifying the bound is missing, the array has an incomplete type.

An array may be constructed from an arithmetic type, from a pointer, from a structure or union, or from

another array (to generate a multi-dimensional array). Any type from which an array is constructed must be

complete; it must not be an array of structure of incomplete type. This implies that for a multi-dimensional

array, only the first dimension may be missing. The type of an object of incomplete aray type is completed by

another, complete, declaration for the object (Par.A.10.2), or by initializing it (Par.A.8.7). For example,

 float fa[17], *afp[17];

declares an array of float numbers and an array of pointers to float numbers. Also,

 static int x3d[3][5][7];

declares a static three-dimensional array of integers, with rank 3 X 5 X 7. In complete detail, x3d is an array

of three items: each item is an array of five arrays; each of the latter arrays is an array of seven integers. Any

of the expressions x3d, x3d[i], x3d[i][j], x3d[i][j][k] may reasonably appear in an expression.

The first three have type ``array,'', the last has type int. More specifically, x3d[i][j] is an array of 7

integers, and x3d[i] is an array of 5 arrays of 7 integers.

The array subscripting operation is defined so that E1[E2] is identical to *(E1+E2). Therefore, despite its

asymmetric appearance, subscripting is a commutative operation. Because of the conversion rules that apply

to + and to arrays (Pars.A6.6, A.7.1, A.7.7), if E1 is an array and E2 an integer, then E1[E2] refers to the

E2-th member of E1.

24 Appendix A - Reference Manual

24 Appendix A - Reference Manual

Preview from Notesale.co.uk

Page 177 of 217

declaration.

For example, the declaration

 int f(), *fpi(), (*pfi)();

declares a function f returning an integer, a function fpi returning a pointer to an integer, and a pointer pfi

to a function returning an integer. In none of these are the parameter types specified; they are old-style.

In the new-style declaration

 int strcpy(char *dest, const char *source), rand(void);

strcpy is a function returning int, with two arguments, the first a character pointer, and the second a

pointer to constant characters. The parameter names are effectively comments. The second function rand

takes no arguments and returns int.

Function declarators with parameter prototypes are, by far, the most important language change introduced by the ANSI

standard. They offer an advantage over the ``old-style'' declarators of the first edition by providing error-detection and

coercion of arguments across function calls, but at a cost: turmoil and confusion during their introduction, and the

necessity of accomodating both forms. Some syntactic ugliness was required for the sake of compatibility, namely void

as an explicit marker of new-style functions without parameters.

The ellipsis notation ``, ...'' for variadic functions is also new, and, together with the macros in the

standard header <stdarg.h>, formalizes a mechanism that was officially forbidden but unofficially

condoned in the first edition.

These notations were adapted from the C++ language.

A.8.7 Initialization

When an object is declared, its init-declarator may specify an initial value for the identifier being declared.

The initializer is preceded by =, and is either an expression, or a list of initializers nested in braces. A list may

end with a comma, a nicety for neat formatting.

initializer:

assignment-expression

{ initializer-list }

{ initializer-list , }

initializer-list:

initializer

initializer-list , initializer

All the expressions in the initializer for a static object or array must be constant expressions as described in

Par.A.7.19. The expressions in the initializer for an auto or register object or array must likewise be

constant expressions if the initializer is a brace-enclosed list. However, if the initializer for an automatic

object is a single expression, it need not be a constant expression, but must merely have appropriate type for

assignment to the object.

The first edition did not countenance initialization of automatic structures, unions, or arrays. The ANSI standard allows it,

but only by constant constructions unless the initializer can be expressed by a simple expression.

A static object not explicitly initialized is initialized as if it (or its members) were assigned the constant 0. The

initial value of an automatic object not explicitly intialized is undefined.

26 Appendix A - Reference Manual

26 Appendix A - Reference Manual

Preview from Notesale.co.uk

Page 179 of 217

definitions for an externally linked object, throughout all the translation units of the program, are considered together

instead of in each translation unit separately. If a definition occurs somewhere in the program, then the tentative

definitions become merely declarations, but if no definition appears, then all its tentative definitions become a definition

with initializer 0.

A.11 Scope and Linkage

A program need not all be compiled at one time: the source text may be kept in several files containing

translation units, and precompiled routines may be loaded from libraries. Communication among the functions

of a program may be carried out both through calls and through manipulation of external data.

Therefore, there are two kinds of scope to consider: first, the lexical scope of an identifier which is the region

of the program text within which the identifier's characteristics are understood; and second, the scope

associated with objects and functions with external linkage, which determines the connections between

identifiers in separately compiled translation units.

A.11.1 Lexical Scope

Identifiers fall into several name spaces that do not interfere with one another; the same identifier may be used

for different purposes, even in the same scope, if the uses are in different name spaces. These classes are:

objects, functions, typedef names, and enum constants; labels; tags of structures or unions, and enumerations;

and members of each structure or union individually.

These rules differ in several ways from those described in the first edition of this manual. Labels did not previously have

their own name space; tags of structures and unions each had a separate space, and in some implementations enumerations

tags did as well; putting different kinds of tags into the same space is a new restriction. The most important departure from

the first edition is that each structure or union creates a separate name space for its members, so that the same name may

appear in several different structures. This rule has been common practice for several years.

The lexical scope of an object or function identifier in an external declaration begins at the end of its

declarator and persists to the end of the translation unit in which it appears. The scope of a parameter of a

function definition begins at the start of the block defining the function, and persists through the function; the

scope of a parameter in a function declaration ends at the end of the declarator. The scope of an identifier

declared at the head of a block begins at the end of its declarator, and persists to the end of the block. The

scope of a label is the whole of the function in which it appears. The scope of a structure, union, or

enumeration tag, or an enumeration constant, begins at its appearance in a type specifier, and persists to the

end of a translation unit (for declarations at the external level) or to the end of the block (for declarations

within a function).

If an identifier is explicitly declared at the head of a block, including the block constituting a function, any

declaration of the identifier outside the block is suspended until the end of the block.

A.11.2 Linkage

Within a translation unit, all declarations of the same object or function identifier with internal linkage refer to

the same thing, and the object or function is unique to that translation unit. All declarations for the same

object or function identifier with external linkage refer to the same thing, and the object or function is shared

by the entire program.

As discussed in Par.A.10.2, the first external declaration for an identifier gives the identifier internal linkage if

the static specifier is used, external linkage otherwise. If a declaration for an identifier within a block does

not include the extern specifier, then the identifier has no linkage and is unique to the function. If it does

include extern, and an external declaration for is active in the scope surrounding the block, then the

identifier has the same linkage as the external declaration, and refers to the same object or function; but if no

external declaration is visible, its linkage is external.

Appendix A - Reference Manual 35

Appendix A - Reference Manual 35

Preview from Notesale.co.uk

Page 188 of 217

 #define TABSIZE 100

 int table[TABSIZE];

The definition

 #define ABSDIFF(a, b) ((a)>(b) ? (a)-(b) : (b)-(a))

defines a macro to return the absolute value of the difference between its arguments. Unlike a function to do

the same thing, the arguments and returned value may have any arithmetic type or even be pointers. Also, the

arguments, which might have side effects, are evaluated twice, once for the test and once to produce the value.

Given the definition

 #define tempfile(dir) #dir "%s"

the macro call tempfile(/usr/tmp) yields

 "/usr/tmp" "%s"

which will subsequently be catenated into a single string. After

 #define cat(x, y) x ## y

the call cat(var, 123) yields var123. However, the call cat(cat(1,2),3) is undefined: the

presence of ## prevents the arguments of the outer call from being expanded. Thus it produces the token

string

 cat (1 , 2)3

and)3 (the catenation of the last token of the first argument with the first token of the second) is not a legal

token. If a second level of macro definition is introduced,

 #define xcat(x, y) cat(x,y)

things work more smoothly; xcat(xcat(1, 2), 3) does produce 123, because the expansion of xcat

itself does not involve the ## operator.

Likewise, ABSDIFF(ABSDIFF(a,b),c) produces the expected, fully-expanded result.

A.12.4 File Inclusion

A control line of the form

include <filename>

causes the replacement of that line by the entire contents of the file filename. The characters in the name

filename must not include > or newline, and the effect is undefined if it contains any of ", ', \, or /*. The

named file is searched for in a sequence of implementation-defined places.

Similarly, a control line of the form

include "filename"

searches first in association with the original source file (a deliberately implementation-dependent phrase),

and if that search fails, then as in the first form. The effect of using ', \, or /* in the filename remains

undefined, but > is permitted.

38 Appendix A - Reference Manual

38 Appendix A - Reference Manual

Preview from Notesale.co.uk

Page 191 of 217

type-qualifier declaration-specifiersopt

storage-class specifier: one of

auto register static extern typedef

type specifier: one of

void char short int long float double signed

unsigned struct-or-union-specifier enum-specifier typedef-name

type-qualifier: one of

const volatile

struct-or-union-specifier:

struct-or-union identifieropt { struct-declaration-list }

struct-or-union identifier

struct-or-union: one of

struct union

struct-declaration-list:

struct declaration

struct-declaration-list struct declaration

init-declarator-list:

init-declarator

init-declarator-list, init-declarator

init-declarator:

declarator

declarator = initializer

struct-declaration:

specifier-qualifier-list struct-declarator-list;

specifier-qualifier-list:

type-specifier specifier-qualifier-listopt

type-qualifier specifier-qualifier-listopt

struct-declarator-list:

struct-declarator

struct-declarator-list , struct-declarator

struct-declarator:

declarator

declaratoropt : constant-expression

enum-specifier:

enum identifieropt { enumerator-list }

enum identifier

enumerator-list:

enumerator

enumerator-list , enumerator

42 Appendix A - Reference Manual

42 Appendix A - Reference Manual

Preview from Notesale.co.uk

Page 195 of 217

Appendix B - Standard Library

This appendix is a summary of the library defined by the ANSI standard. The standard library is not part of

the C language proper, but an environment that supports standard C will provide the function declarations and

type and macro definitions of this library. We have omitted a few functions that are of limited utility or easily

synthesized from others; we have omitted multi-byte characters; and we have omitted discussion of locale

issues; that is, properties that depend on local language, nationality, or culture.

The functions, types and macros of the standard library are declared in standard headers:

 <assert.h> <float.h> <math.h> <stdarg.h> <stdlib.h>

 <ctype.h> <limits.h> <setjmp.h> <stddef.h> <string.h>

 <errno.h> <locale.h> <signal.h> <stdio.h> <time.h>

A header can be accessed by

"sb.1">B.1 Input and Output: <stdio.h> The input and output functions,

types, and macros defined in <stdio.h> represent nearly one third of the

library.

A stream is a source or destination of data that may be associated with a disk or other peripheral. The library

supports text streams and binary streams, although on some systems, notably UNIX, these are identical. A text

stream is a sequence of lines; each line has zero or more characters and is terminated by '\n'. An

environment may need to convert a text stream to or from some other representation (such as mapping '\n'

to carriage return and linefeed). A binary stream is a sequence of unprocessed bytes that record internal data,

with the property that if it is written, then read back on the same system, it will compare equal.

A stream is connected to a file or device by opening it; the connection is broken by closing the stream.

Opening a file returns a pointer to an object of type FILE, which records whatever information is necessary to

control the stream. We will use ``file pointer'' and ``stream'' interchangeably when there is no ambiguity.

When a program begins execution, the three streams stdin, stdout, and stderr are already open.

B.1.1 File Operations

The following functions deal with operations on files. The type size_t is the unsigned integral type

produced by the sizeof operator.

FILE *fopen(const char *filename, const char *mode)

fopen opens the named file, and returns a stream, or NULL if the attempt fails. Legal values for

mode include:

"r" open text file for reading

"w" create text file for writing; discard previous contents if any

"a" append; open or create text file for writing at end of file

"r+" open text file for update (i.e., reading and writing)

"w+" create text file for update, discard previous contents if any

"a+" append; open or create text file for update, writing at end

Update mode permits reading and writing the same file; fflush or a file-positioning function must

be called between a read and a write or vice versa. If the mode includes b after the initial letter, as in

"rb" or "w+b", that indicates a binary file. Filenames are limited to FILENAME_MAX characters.

At most FOPEN_MAX files may be open at once.

FILE *freopen(const char *filename, const char *mode, FILE *stream)

Appendix B - Standard Library 1

Preview from Notesale.co.uk

Page 201 of 217

#, which specifies an alternate output form. For o, the first digit will become zero. For x or X,

0x or 0X will be prefixed to a non-zero result. For e, E, f, g, and G, the output will always

have a decimal point; for g and G, trailing zeros will not be removed.

♦

A number specifying a minimum field width. The converted argument will be printed in a field at

least this wide, and wider if necessary. If the converted argument has fewer characters than the field

width it will be padded on the left (or right, if left adjustment has been requested) to make up the field

width. The padding character is normally space, but is 0 if the zero padding flag is present.

•

A period, which separates the field width from the precision.•

A number, the precision, that specifies the maximum number of characters to be printed from a string,

or the number of digits to be printed after the decimal point for e, E, or f conversions, or the number

of significant digits for g or G conversion, or the number of digits to be printed for an integer (leading

0s will be added to make up the necessary width).

•

A length modifier h, l (letter ell), or L. ``h'' indicates that the corresponding argument is to be printed

as a short or unsigned short; ``l'' indicates that the argument is a long or unsigned

long, ``L'' indicates that the argument is a long double.

•

Width or precision or both may be specified as *, in which case the value is computed by converting the next

argument(s), which must be int.

The conversion characters and their meanings are shown in Table B.1. If the character after the % is not a

conversion character, the behavior is undefined.

Table B.1 Printf Conversions

Character Argument type; Printed As

d,i int; signed decimal notation.

o int; unsigned octal notation (without a leading zero).

x,X
unsigned int; unsigned hexadecimal notation (without a leading 0x or 0X), using abcdef

for 0x or ABCDEF for 0X.

u int; unsigned decimal notation.

c int; single character, after conversion to unsigned char

s
char *; characters from the string are printed until a '\0' is reached or until the number of

characters indicated by the precision have been printed.

f
double; decimal notation of the form [-]mmm.ddd, where the number of d's is given by the

precision. The default precision is 6; a precision of 0 suppresses the decimal point.

e,E

double; decimal notation of the form [-]m.dddddde+/-xx or [-]m.ddddddE+/-xx, where

the number of d's is specified by the precision. The default precision is 6; a precision of 0

suppresses the decimal point.

g,G
double; %e or %E is used if the exponent is less than -4 or greater than or equal to the precision;

otherwise %f is used. Trailing zeros and a trailing decimal point are not printed.

p void *; print as a pointer (implementation-dependent representation).

n
int *; the number of characters written so far by this call to printf is written into the

argument. No argument is converted.

% no argument is converted; print a %

int printf(const char *format, ...)

printf(...) is equivalent to fprintf(stdout, ...).

int sprintf(char *s, const char *format, ...)

sprintf is the same as printf except that the output is written into the string s, terminated with

'\0'. s must be big enough to hold the result. The return count does not include the '\0'.

int vprintf(const char *format, va_list arg)

int vfprintf(FILE *stream, const char *format, va_list arg)

Appendix B - Standard Library 3

Appendix B - Standard Library 3

Preview from Notesale.co.uk

Page 203 of 217

B.2 Character Class Tests: <ctype.h>

The header <ctype.h> declares functions for testing characters. For each function, the argument list is an

int, whose value must be EOF or representable as an unsigned char, and the return value is an int.

The functions return non-zero (true) if the argument c satisfies the condition described, and zero if not.

isalnum(c) isalpha(c) or isdigit(c) is true

isalpha(c) isupper(c) or islower(c) is true

iscntrl(c) control character

isdigit(c) decimal digit

isgraph(c) printing character except space

islower(c) lower-case letter

isprint(c) printing character including space

ispunct(c) printing character except space or letter or digit

isspace(c)
space, formfeed, newline, carriage return, tab,

vertical tab

isupper(c) upper-case letter

isxdigit(c) hexadecimal digit

In the seven-bit ASCII character set, the printing characters are 0x20 (' ') to 0x7E ('-'); the control

characters are 0 NUL to 0x1F (US), and 0x7F (DEL).

In addition, there are two functions that convert the case of letters:

int tolower(c) convert c to lower case

int toupper(c) convert c to upper case

If c is an upper-case letter, tolower(c) returns the corresponding lower-case letter, toupper(c) returns

the corresponding upper-case letter; otherwise it returns c.

B.3 String Functions: <string.h>

There are two groups of string functions defined in the header <string.h>. The first have names beginning

with str; the second have names beginning with mem. Except for memmove, the behavior is undefined if

copying takes place between overlapping objects. Comparison functions treat arguments as unsigned

char arrays.

In the following table, variables s and t are of type char *; cs and ct are of type const char *; n is

of type size_t; and c is an int converted to char.

char *strcpy(s,ct) copy string ct to string s, including '\0'; return s.

char

*strncpy(s,ct,n)

copy at most n characters of string ct to s; return s. Pad with '\0''s if ct

has fewer than n characters.

char *strcat(s,ct) concatenate string ct to end of string s; return s.

char

*strncat(s,ct,n)

concatenate at most n characters of string ct to string s, terminate s with

'\0'; return s.

int strcmp(cs,ct)
compare string cs to string ct, return <0 if cs<ct, 0 if cs==ct, or >0 if

cs>ct.

int

strncmp(cs,ct,n)

compare at most n characters of string cs to string ct; return <0 if cs<ct, 0

if cs==ct, or >0 if cs>ct.

char *strchr(cs,c) return pointer to first occurrence of c in cs or NULL if not present.

Appendix B - Standard Library 7

Appendix B - Standard Library 7

Preview from Notesale.co.uk

Page 207 of 217

DBL_MAX_EXP maximum n such that FLT_RADIXn-1 is representable

DBL_MIN 1E-37 minimum normalized double floating-point number

DBL_MIN_EXP minimum n such that 10n is a normalized number

Back to Appendix A -- Index -- Appendix C

Compiled by tmdcjsl(skidrow8123@hotmail.com)

Back to Appendix B -- Index

Appendix B - Standard Library 15

Appendix B - Standard Library 15

Preview from Notesale.co.uk

Page 215 of 217

