SECOND EDITION

THE

i e .C
'\e\N“ .v 3—’(

PROGRAMMING
LANGUAGE

BRIAN W KERNIGHAN
DENNIS M.RITCHIE

EEEEEEEEEEEEEEEEEEEEEEEEE

Table of Contents

Chapter 4 - Functions and Program Structure

4.6 StAtIC VATTADIES. ... ceouiiiiiiieite et ettt b e b e st e st e bt e bt e b e bt e bt e bt e bt e bt e bt e beennean 13
4.7 REGISLET VATIADIESeeiiiiiiiiiitie ettt ettt ettt et e bt et e bt e bt enbe e s bt e be e beenbeebeensean 13
4.8 BIOCK STIUCTULE.eeitieiiiieette ettt ettt ettt e st e st e e bt e e beeenbbeesbteesabeesabeeas 14
4.9 INIALIZATION. ...ttt ettt et et e st e st e e s bt e b te s bt e sbeesbeeebee bt e bt e bt e beesbeenbeenbeenbeenseensean 14
410 RECUTISION. ...ttt ettt et esa e s bt e b te bt e sbee e bt e ebe e bt e bt e bt e beesbeenbeanbeenbeenseensean 15
.11 THE € PrePIOCESSOL........vtiiuttieiteeiteeite ettt ee ettt ettt ettt e sbb e sabeesabeesabeesabeesbaeebaeenbaeenbbeesabeesabeens 17
4111 FIle INCIUSION ...ttt ettt et ettt b e bt e beesbe e be e bt ebeenbeeneean 17
4.11.2 MACTO SUDSHIULION. ..cuttteiieeitienitee ettt ettt et ettt ettt e st e st e et e et e ebeeesbbeesbbeesbaeesmbeesabeesbeeenns 17
4.11.3 Conditional INCIUSION........eeiuiiiiiiiiiitieeiie ettt ettt ettt e be e b e b eneeas 19
Chapter 5 - Pointers and Arrays 1
5.1 POINLErs and AdAIESSES.. . eeuueeuiieuiieitiiiie ettt ettt sttt e et sae e b et esatesteesaeesatesbeesbeesbeesaeesaeesneeaes 1
5.2 Pointers and FUNCHION ATZUMENLS.couiiiiiieiiieiieeiie ettt site st stte st e saeesaeesateseeesaeesaeesaeenaes 2
5.3 POINEETS AN ATTAYS .. .eiiuieiiiieiiieiieeite ettt ettt e stteeatesatesatesseesbeesaeesteesseesaeesseesbtesseesaeesneenseennes 5
5.4 AdAress ATTNIMELIC.eiuviiiiieiieiie ettt ettt sttt e et sa et esatesteesaeesbeesbtesaeesaeesaeesaeesseens 7
5.5 Character Pointers and FUNCHONS.cocuiiiiiiiiiiiiieie ettt ee s 10
5.6 Pointer Arrays; POINters t0 POINEEIS.cc.ieiuiiiiiiiiiiieie ettt 13
5.7 Multi-dimenSioNal ATTAYScueeoteeieeieeteete ettt et ettt et et et e et e teebe e bt e bt e be e teebeebeebeenseensean 15
5.8 Initialization Of POINIET ATTAYS.....cccueeiuieiietieieeieeie ettt ettt ettt ettt ettt e bt e e ebe e b ebeebeeneeas 17
5.9 Pointers vs. Multi-dimensional ATTAYS.........cc.coerierierierieiinineeeeteniesie ettt e ey enee 17
5.10 Command-line ATZUMENTS.......c.cerueeriieriieiieiieieeie ettt ettt te e eteebeeveeeeeeeeseees e K 18
5.11 P01nters to Functlons .. CO PV ANN 22

Chapter 6 - Structures. ‘\\&Ote] 1

6.1 Basics of Structures...............g. O 2&(.. 1
6.2 Structures and Functi "{ 6“ ... 3
6.3 Arrays of Str\TK OW e?} ... 5
6.4 Poi X TES..cuennnn ag ... 8

6.5 Selffreferential StruCtures...... Y. ...l T et 9
6.6 TaADIE LIOOKUD. ... ettt ettt ettt et ettt et e et e eate et e eabeenteeneeenbeeaneens 12
0.7 TYPEACT......eeeeeeee ettt ettt ettt ettt et et e et e e bt et e eabe et e enteenteenneeas 14
0.8 UTNIOMNS. ...ttt ettt ettt ettt ettt b e bt ettt b e eat et e sb e bt et e st e sb e e st et e eb e ebtea b e bt eueeat et e nneeaeennen 16
0.9 BIE-TIELAS. c..cvtentitteetetet ettt ettt b e e bbbt ettt eanes 17
Chapter 7 - Input and Output 1
7.1 Standard Input and OULPUL.......eeoiuiiiiiiiiiie ittt et et e st e sttt e ebeeenbaeenaaes 1
7.2 Formatted OUtput = PIINtE.........oooiiiiiiiiiie ettt sttt e st e st e st e sbeesaeesaeeseeeas 2
7.3 Variable-length Argument LiSES.........cueiiiiiiiieiiiiieeie ettt sttt st st e st e et e saeeas 3
7.4 Formatted INPUL - SCANT........ooiiiiiiii ettt sttt st e e e e as 4
7.5 AR ACCESS...vteutentiiteitete ettt ettt ettt ettt sttt b e bt bbbt bt ettt b et e bbbttt sbe et en 7
7.6 Error Handling - Stderr and EXit........ccccoiiiiiiiriniiiiiiiieese ettt 9
7.7 Line INPUL anNd OULPUL......eetieiieieeie ettt ettt ettt et e e bt et e bt e bt et e e be e teenbeenbeenbeenseensean 10
7.8 Miscellaneous FUNCHONS.cc.ciiiiiiiririiet ettt st st s 11
7.8.1 StIING OPETATIONSeeuteeutteuteeiieete et et ettt et e bt e bt et e ebeebeebeenbeenbeenbeenbeenseebeenbeebeenseenseenseas 11
7.8.2 Character Class Testing and CONVEISION.cccueervieriieriieiierieente et eteeieeieesteesie e s eseeeseeeeeas 12
783 UNEELC. ce ettt ettt ettt ettt ettt et ettt e sttt e ettt e b bt e s bt e e bt e e sbb e e sabeeeabeeeabe e et e e enbteenbbeenats 12
7.8.4 Command EXECULION.....c..co.titiriiririietitiett ettt ettt ettt st et sbe st ne st saeeaeens 12
7.8.5 Storage ManAQ@EMENL.eeeiuiiiiiiieiiieniiee ittt ettt ettt e sttt et e e sibeesabee st e sabeeebeeebeeenaaeenaees 12
7.8.6 Mathematical FUNCHIONS..........cciiiiiiiiiiieiccniceteec ettt ettt 13
7.8.7 Random NUMDET ZENETALION.cccueetieiieiieieeie ettt ettt ettt ettt be e et eteesbeebeebeebeeneeas 13

Table of Contents

Chapter 8 - The UNIX System Interface 1
8.1 FFILE DIESCIIPLOTS ...ttt ettt ettt ettt et ettt et ettt et e bt e bt e teeateeabeenbeembeenbeenbeenteenbeanbeenbeenseensean 1
8.2 Low Level I/O - Read and WIIe........oiuiiiieiieieeie ettt ettt ettt ettt n 1
8.3 Open, Creat, Close, UNINK........cooiiiiiiiei ettt ettt et e n 3
8.4 RandOm ACCESS = LLSEEKcoouuiiiiiiiiiiiiie ettt ettt 5
8.5 Example - An implementation of Fopen and GetC...........c.eecueeieeiieriiiniieniieieeeeeeie e 5
8.6 Example - LiStiNg DITECIOTIES ... eeuveeutietieieeieeteeie ettt et ettt et et e bt et et e bt eteeteebeebeenbeenseennean 8
8.7 Example - A Storage ALLOCALOLceiuiiiiiiiiiiiiiieeritee ettt ettt st ettt e e e 12

Appendix A - Reference Manual 1
AT INEEOAUCTION ...ttt ettt et ea e s et e s bt e e bt e s bt e sh e e steeeaeesaeesaeesatesaeesaeesneenseennes 1
AN 1 1o 1 00 1 1S 115 0] 1 TSRO S SRR 1

A2 T TOKEIIS. c. ettt ettt et e b e s ab e st e s bt e e bt e e bt e e bt e e bt e e baeenabeesabee s 1
AL2.2 COMIMEIES c...eeiteeitte ettt ettt ettt et et e ettt ettt e bt e bt e e sbbeesabeesabeeeabeeeabeeenbbeebbeenbaeenabeesabeens 1
F R BB [1<) 1181 (S £ TSRS SRR 1
A2 KEYWOTAS ettt ettt et e b e st e st e s bt e e bt e s bt e e bt e e bt e e nbbeesabeesabee s 1
F N B O] N 711 LTSRS 2
AL2.6 SIING LILETALS.....eouiiiiiieiiieie ettt e st e bt e s bt e s bt e sbeesbeesaeesaeesbeeas 3
PANC N 117D Q[0 721 (o) 1 WO S USSR 4
A4 Meaning Of IAENTIETS .. .cc.eiiiiiiieie ettt sttt e st e et e st esaeesaeeas 4
A4 SOTAZE CLASS. .ttt et ettt et e s e e st e et e eabee et egseeenbaeenabeesabeens 4
A4.2 BasiC TYPES...ueeuieiieiieiieieeie ettt ettt ettt seee e e e e sieaeee s R K 4

A4.3 DErIVEd LYPES.c.eeeuieiiieeiieeiie ettt sttt e g i e CO. 5
e
A.6 CONVEISIONS....ceoeiveiieiieieeeeeeeeeeeeeepgenes N ... 6
A.6.1 Integral PromogiqQp. m 2&7 ... 6
A0 £

A.6.2 Integra VRN . e O ... 6
A.6.31 t‘j@a loating....... eA .. 6
P ﬁ@l oating Typ @9 .. 6
.6.5 Arithmetic COMVETSTONSTT . c..i ittt ettt sttt sttt eae b ennen 7
A.6.6 POINLETS and INTEEETS.ccueiiiiiiiiiiiieeiie ettt sttt e et e st sbeesbtesaeesaeesaeesaeenes 7
ALD.T VOIG. ettt b e bbbttt ettt anen 8
ALO.8 POINLETS 10 VOI..eiutiiieniiiiiiiieiteie ettt ettt ettt st ae bt sae e eanes 8
YA 24 03 (1 (0] 1 TSP S USSP 8
ALT.1 POINEET CONVETSION. ..c..eiutiiiiieitententeettetente ettt sttt et et ste st et e st sheebeestesbesbeesteaesbeeaeententeeaeennen 8
A.T.2 Primary EXPIESSIONSc..couerutetiriertietetenieettetenteete ettt ste sttt stesieeatesbesbesbeessenaesbeeaeenaensesaeennen 9
ALT.3 POSHIX EXPIESSIONS. .. .eetiiiiiieititintieiteteste ettt ettt sttt st ae st sae e eanes 9
AT A UNATY OPETALOTS. c...eeruiteeiieeite ettt ettt e et e st et e et e ebt e ettt e sbteesbbeesabeesabeesabeesabeeeabaeebeeenbseenanes 11
ALT.S CaSES .ttt ettt bbbt bt s bbbt st et bt ettt sheeaeens 12
A.T7.6 MUItPIICAtIVE OPETALOTS. ...eueieuteenteeieeteeteete et ete et et eteebeebeebe e bt e beeaeenbeebeebeebeenseenseas 13
ALT. 7 AdAItIVE OPEIALOTS. .. .eutieuiieiieeie ettt ettt ettt ettt e bt eteebe e bt ebe e bt ebeeseebeebeebeeseeseenseas 13
ALT.8 SHITE OPEIALOTS . ..eutieitieiteeie ettt ettt ettt et ettt et e e bt e bt e bt e bt enbeebeebeebeenbeenbeenseas 14
A.T7.9 Relational OPETAOTSc..coueeutetirtiriieitintiett ettt sttt ettt et et s bt st est et sbeessentesbesaeessentesaeennens 14
A.T.10 EQUAlILY OPEIALOTS ...c.utieuteeuieeieeieete ettt et et et et et e teebeebeebe e bt e bt enseebeebeenbeeseenseenseas 14
A.7.11 BitwiSe AND OPEIALOL.....ccuuieiietieiieteeteeit et et et ettt ete e be e bt e bt e bt e bt ebeebeenbeebeeseenseas 15
A.7.12 Bitwise EXCIusive OR OPETator.........c.cocuteiieiiiiitieiieieeieeie ettt see e b e eeeas 15
A.7.13 Bitwise INclusive OR OPErator..........c.cocueeiieeiiieiiieiieieeieeie ettt ettt be e eees 15
A.7.14 LoGICal AND OPEIALOL.....ccuuieiieiietieieeteeie et e bt et et et eteebeebe e bt e bt e st ebeenbeenbeebeeseenseas 15
A.T.15 LoGICAl OR OPETALOL........eeiieiieieeiieie ettt ettt ettt ettt ettt ettt e bt e beesbe e beebeenbeeneeas 15
A.7.16 Conditional OPETALOL.......eeuieieeiteiieieete ettt ettt ettt et e beebe e bt e bt e bt ebeesbeebeebeenbeenseas 16
A.7.17 ASSIZNMENt EXPIESSIONS. .. .eiiuiiitietieiieteete ettt ettt ettt ettt ettt be et e ebe e beebeenbeeneeas 16

6 Chapter 1 - A Tutorial Introduction

40 4
60 15
80 26
100 37

The more serious problem is that because we have used integer arithmetic, the Celsius temperatures are not
very accurate; for instance, 0°F is actually about -17.8°C, not -17. To get more accurate answers, we should
use floating-point arithmetic instead of integer. This requires some changes in the program. Here is the second
version:

#include <stdio.h>

/* print Fahrenheit-Celsius table
for fahr = 0, 20, ..., 300; floating-point version */
main ()
{
float fahr, celsius;
float lower, upper, step;

lower = 0; /* lower limit of temperatuire scale */
upper = 300; /* upper limit */
step = 20; /* step size */

fahr = lower;
while (fahr <= upper) {
celsius = (5.0/9.0) * (fahr-32.0);
printf ("$3.0f %6.1f\n", fahr, celsius); K

} fahr = fahr + step; \ CO .
} Sa

This is much the same as before, except that fahr c are de e float and the formula
for conversion is written in a more natura e unable to u ' rev10us version because
integer division would trunca:[e ec mal p01 1n 1cates that it is floating point,
however, s0 5.0/9. \tét becaus@ two ﬂoa‘ung point values.

If an arlthmetlc?perator has integer opgn@' nteger operation is performed. If an arithmetic operator has
one floating-point operand and one integer operand, however, the integer will be converted to floating point
before the operation is done. If we had written (fahr-32), the 32 would be automatically converted to
floating point. Nevertheless, writing floating-point constants with explicit decimal points even when they have
integral values emphasizes their floating-point nature for human readers.

The detailed rules for when integers are converted to floating point are in Chapter 2. For now, notice that the
assignment

fahr = lower;
and the test
while (fahr <= upper)
also work in the natural way - the int is converted to f1oat before the operation is done.
The print £ conversion specification $3 . 0 f says that a floating-point number (here fahr) is to be printed
at least three characters wide, with no decimal point and no fraction digits. $6 . 1 £ describes another number

(celsius) thatis to be printed at least six characters wide, with 1 digit after the decimal point. The output
looks like this:

6 Chapter 1 - A Tutorial Introduction

Chapter 1 - A Tutorial Introduction 9

The standard library provides several functions for reading or writing one character at a time, of which
getchar and putchar are the simplest. Each time it is called, get char reads the next input character
from a text stream and returns that as its value. That is, after

c = getchar();

the variable c contains the next character of input. The characters normally come from the keyboard; input
from files is discussed in Chapter 7.

The function put char prints a character each time it is called:

putchar (c);

prints the contents of the integer variable c as a character, usually on the screen. Calls to put char and
printf may be interleaved; the output will appear in the order in which the calls are made.

1.5.1 File Copying

Given getchar and putchar, you can write a surprising amount of useful code without knowing anything
more about input and output. The simplest example is a program that copies its input to its output one
character at a time:

read a character

output the character just read

read a character O ‘u
Converting this into C gives: tesa\e C

"temp0019.html">Chapter 2. NO

Exercsise 1-6. Verif é\k‘\‘:x;ﬁe&wn get cﬂ Q
ExerCIP Y a‘lte a program§op @@ue of EOF.

1.5.2 Character Counting

while (charater 1is not end-of—-file indicator) K

FisOorl.

The next program counts characters; it is similar to the copy program.

#include <stdio.h>
/* count characters in input; 1lst version */
main ()
{
long nc;
nc = 0;
while (getchar() != EOF)

++nc;
printf ("$1d\n", nc);

The statement

++nc;

presents a new operator, ++, which means increment by one. You could instead write nc = nc + 1 but

Chapter 1 - A Tutorial Introduction 9

10 Chapter 1 - A Tutorial Introduction

++nc is more concise and often more efficient. There is a corresponding operator —— to decrement by 1. The
operators ++ and —— can be either prefix operators (++nc) or postfix operators (nc++); these two forms have
different values in expressions, as will be shown in Chapter 2, but ++nc and nc++ both increment nc. For
the moment we will will stick to the prefix form.

The character counting program accumulates its count in a 1 ong variable instead of an int. 1 ong integers are
at least 32 bits. Although on some machines, int and 1ong are the same size, on others an int is 16 bits,
with a maximum value of 32767, and it would take relatively little input to overflow an int counter. The
conversion specification $1d tells print £ that the corresponding argument is a 1ong integer.

It may be possible to cope with even bigger numbers by using a double (double precision f1oat). We will
also use a for statement instead of a while, to illustrate another way to write the loop.

"$.0f\n", nc);
}

printf uses $f for both float and double; % . 0f suppresses the printing of the decimal point and the
fraction part, which is zero.

The body of this for loop is empty, because all the work is done in the test and increment parts. But the
grammatical rules of C require that a for statement have a body. The isolated semicolon, called a null

statement, is there to satisfy that requirement. We put it on a separate line to make it visible.

Before we leave the character counting program, observe that if the input contains no characters, th\v&ile

or for test fails on the very first call to get char, and the program produces zero, the rlght an is is
important. One of the nice things about while and for is that they test at the top ft re
proceeding with the body. If there is nothing to do, nothing is done even % ver going through
the loop body. Programs should act intelligently when given ze ewhile and for
statements help ensure that programs do reasonab W m ary con&:ﬁt

1.5.3 Line Counting . \N "(O
The next progr (u \Lut lines. APe&% above the standard library ensures that an input text
e

stream appears 3s a sequence of lines, e§ch t€rmifiated by a newline. Hence, counting lines is just counting
newlines:

#include <stdio.h>

/* count lines in input */
main ()

{

int ¢, nl;

nl = 0;
while ((c = getchar()) != EOF)
if (c == '\n'")
++nl;

printf ("$d\n", nl);

The body of the while now consists of an i £, which in turn controls the increment ++n1. The i f statement
tests the parenthesized condition, and if the condition is true, executes the statement (or group of statements in
braces) that follows. We have again indented to show what is controlled by what.

The double equals sign == is the C notation for ““is equal to" (like Pascal's single = or Fortran's . EQ.). This

symbol is used to distinguish the equality test from the single = that C uses for assignment. A word of caution:
newcomers to C occasionally write = when they mean ==. As we will see in Chapter 2, the result is usually a

10 Chapter 1 - A Tutorial Introduction

Chapter 1 - A Tutorial Introduction 17

}

The parameter n is used as a temporary variable, and is counted down (a for loop that runs backwards) until
it becomes zero; there is no longer a need for the variable i. Whatever is done to n inside power has no
effect on the argument that power was originally called with.

When necessary, it is possible to arrange for a function to modify a variable in a calling routine. The caller
must provide the address of the variable to be set (technically a pointer to the variable), and the called
function must declare the parameter to be a pointer and access the variable indirectly through it. We will cover
pointers in Chapter 5.

The story is different for arrays. When the name of an array is used as an argument, the value passed to the
function is the location or address of the beginning of the array - there is no copying of array elements. By
subscripting this value, the function can access and alter any argument of the array. This is the topic of the
next section.

1.9 Character Arrays

The most common type of array in C is the array of characters. To illustrate the use of character arrays and
functions to manipulate them, let's write a program that reads a set of text lines and prints the longest. The
outline is simple enough:

while (there's another 1line)
if (it's longer than the previous longest)
(save 1it)

(save its length) (:(:) .
print longest line a\e .

This outline makes it clear that the program d1V1dN®X« to piecese@ne piece gets a new line, another
saves it, and the rest controls the oceé

Since things d1V1 \1 would @f that way too. Accordingly, let us first write a
separa Ine to input. We will try to make the function useful in other
context! he minimum, ge 0 return a signal about possible end of file; a more useful design

would be to return the length of the line, or zero if end of file is encountered. Zero is an acceptable end-of-file
return because it is never a valid line length. Every text line has at least one character; even a line containing
only a newline has length 1.

When we find a line that is longer than the previous longest line, it must be saved somewhere. This suggests a
second function, copy, to copy the new line to a safe place.

Finally, we need a main program to control get 1ine and copy. Here is the result.

"$s", longest);
return O0;

}

/* getline: read a line into s, return length */
int getline(char s[],int 1lim)
{

int ¢, i;

for (i=0; 1 < lim-1 && (c=getchar())!=EOF && c!='\n'; ++1i)
s[i] = c;

if (c == '"\n'") {
s[i] = ¢;
++1i;

}

Chapter 1 - A Tutorial Introduction 17

Chapter 1 - A Tutorial Introduction 19

are, so we have chosen not to add error checking to it.

Exercise 1-16. Revise the main routine of the longest-line program so it will correctly print the length of
arbitrary long input lines, and as much as possible of the text.

Exercise 1-17. Write a program to print all input lines that are longer than 80 characters.

Exercise 1-18. Write a program to remove trailing blanks and tabs from each line of input, and to delete
entirely blank lines.

Exercise 1-19. Write a function reverse (s) that reverses the character string s. Use it to write a program
that reverses its input a line at a time.

1.10 External Variables and Scope

The variables in main, such as 1ine, longest, etc., are private or local to main. Because they are
declared within main, no other function can have direct access to them. The same is true of the variables in
other functions; for example, the variable i in get 1ine is unrelated to the i in copy. Each local variable in a
function comes into existence only when the function is called, and disappears when the function is exited.
This is why such variables are usually known as automatic variables, following terminology in other
languages. We will use the term automatic henceforth to refer to these local variables. (Chapter 4 discusses
the static storage class, in which local variables do retain their values between calls.)

Because automatic variables come and go with function invocation, they do not retain t%es from one

call to the next, and must be explicitly set upon each entry. If they are not set, t@@l n garbage.
As an alternative to automatic variables, it is possible t0 d hat are external to all functions, that
is, variables that can be accessed by name by any S mec a is rather like Fortran COMMON

or Pascal variables declared in th out«ﬁ) S{bloc) ecaus ?ﬂa] bles are globally accessible, they
can be used instead of argu e mumca ctions. Furthermore, because external

variables remain i ‘[rmanently, L th r rlng and disappearing as functions are called and
exited, e@\f values Qé.\n ons that set them have returned.

An external variable must be dged exactly once, outside of any function; this sets aside storage for it. The
variable must also be declared in each function that wants to access it; this states the type of the variable. The
declaration may be an explicit extern statement or may be implicit from context. To make the discussion
concrete, let us rewrite the longest-line program with 1ine, longest, and max as external variables. This
requires changing the calls, declarations, and bodies of all three functions.

"$s", longest);
return 0;

}

/* getline: specialized version */
int getline (void)
{

int ¢, i;

extern char linel];

for (i = 0; 1 < MAXLINE - 1

&& (c=getchar)) != EOF && c != '\n'; ++1)
line[i] = c;
if (¢ == '"\n') {
line[i] = c;
++1i;
}
line[i] = '"\O0';

Chapter 1 - A Tutorial Introduction 19

2 Chapter 2 - Types, Operators and Expressions

normally be the natural size for a particular machine. short is often 16 bits long, and int either 16 or 32
bits. Each compiler is free to choose appropriate sizes for its own hardware, subject only to the the restriction
that shorts and ints are at least 16 bits, 1ongs are at least 32 bits, and short is no longer than int, which
is no longer than long.

The qualifier signed or unsigned may be applied to char or any integer. unsigned numbers are
always positive or zero, and obey the laws of arithmetic modulo 2", where n is the number of bits in the type.
So, for instance, if chars are 8 bits, unsigned char variables have values between 0 and 255, while
signed chars have values between -128 and 127 (in a two's complement machine.) Whether plain chars
are signed or unsigned is machine-dependent, but printable characters are always positive.

The type 1ong double specifies extended-precision floating point. As with integers, the sizes of
floating-point objects are implementation-defined; f1oat, double and long double could represent
one, two or three distinct sizes.

The standard headers <1imits.h> and <float .h> contain symbolic constants for all of these sizes, along
with other properties of the machine and compiler. These are discussed in Appendix B.

Exercise 2-1. Write a program to determine the ranges of char, short, int, and 1ong variables, both

signed and unsigned, by printing appropriate values from standard headers and by direct computation.
Harder if you compute them: determine the ranges of the various floating-point types.

2.3 Constants

An integer constant like 1234 is an int. A 1ong constant is written with a termlnal L\A in
123456789L; an integer constant too big to fit into an int will also be ta nsigned constants
are written with a terminal u or U, and the suffix ul or UL 1nd1cat‘ long

Floating-point constants contain a decim pmﬁ 4) ®r an expo [’2{?}_’& both; their type is
double, unless suffixed. The suff1 te a fl Ent L indicate a long double.
The value of a spemfle ﬁg 1mal instead of decimal. A leading O (zero) on an
integer constanf{medhs octal; a leading eans hexadecimal. For example, decimal 31 can be written

as 037 in octal and Ox1f or Ox1F in hex. Octal and hexadecimal constants may also be followed by L to
make them 1ong and U to make them unsigned: 0XFUL is an unsigned long constant with value 15
decimal.

A character constant is an integer, written as one character within single quotes, such as 'x'. The
value of a character constant is the numeric value of the character in the machine's character set. For example,
in the ASCII character set the character constant ' 0 ' has the value 48, which is unrelated to the numeric
value 0. If we write ' 0 ' instead of a numeric value like 48 that depends on the character set, the program is
independent of the particular value and easier to read. Character constants participate in numeric operations
just as any other integers, although they are most often used in comparisons with other characters.

Certain characters can be represented in character and string constants by escape sequences like \n (newline);
these sequences look like two characters, but represent only one. In addition, an arbitrary byte-sized bit
pattern can be specified by

"\ooo'

where ooo is one to three octal digits (0...7) or by

"\xhh'

2 Chapter 2 - Types, Operators and Expressions

Chapter 2 - Types, Operators and Expressions 11

Another example of a similar construction comes from the get 1 ine function that we wrote in Chapter 1,
where we can replace

if (¢ == '"\n') {
s[i] = c;
++1;

by the more compact

if (¢ == '"\n'")
s[i++] = c;

As a third example, consider the standard function st rcat (s, t), which concatenates the string t to the
end of string s. st rcat assumes that there is enough space in s to hold the combination. As we have written
it, st rcat returns no value; the standard library version returns a pointer to the resulting string.

/* strcat: concatenate t to end of s; s must be big enough */
void strcat (char s[], char t[])

{

int i, 3J;

i=73=0;
while (s[i] != '\0') /* find end of s */
i++;
while ((s[i++] = t[j++]) != "\0') /* copy t */

} o VK
As each member is copied from t to s, the postflx ++isa {ég@\%d j to make sure that they are in

position for the next pass through the loop.

matches any charact inds2

Exercise 2-4. Write an alternailv quee 2[;\351'[65 each character in s1 that

Exercig ite the functi @g s2), which returns the first location in a string s1 where any
character from the string s2 oclurs, or —1 if s1 contains no characters from s2. (The standard library
function st rpbrk does the same job but returns a pointer to the location.)

2.9 Bitwise Operators

C provides six operators for bit manipulation; these may only be applied to integral operands, that is, char,
short, int, and 1ong, whether signed or unsigned.

& bitwise AND

| bitwise inclusive OR
~ bitwise exclusive OR
<< left shift

>> right shift

~ one's complement (unary)
The bitwise AND operator & is often used to mask off some set of bits, for example

n=mné& 0177;

sets to zero all but the low-order 7 bits of n.

Chapter 2 - Types, Operators and Expressions 11

Chapter 3 - Control Flow 7

The statement is executed, then expression is evaluated. If it is true, statement is evaluated again, and so on.
When the expression becomes false, the loop terminates. Except for the sense of the test, do-while is
equivalent to the Pascal repeat-until statement.

Experience shows that do—while is much less used than while and for. Nonetheless, from time to time it
is valuable, as in the following function itoa, which converts a number to a character string (the inverse of
atoi). The job is slightly more complicated than might be thought at first, because the easy methods of
generating the digits generate them in the wrong order. We have chosen to generate the string backwards, then
reverse it.

/* itoa: convert n to characters in s */
void itoa(int n, char s[])
{

int i, sign;

if ((sign = n) < 0) /* record sign */
n = -n; /* make n positive */
i = 0;
do { /* generate digits in reverse order */
s[i++] = n % 10 + '0'; /* get next digit */
} while ((n /= 10) > 0); /* delete it */
if (sign < 0)
s[i++] = '-';
s[i] = '"\0';

reverse (s);

The do-while is necessary, or at least convenient, since at least one characte @bg\;)k&d in the array
s, even if n is zero. We also used braces around the single statemen ma e body of the
do-while, even though they are unnecessary, so the has{e ot mistake the while part for the

beginning of a while loop.
Exercise 3-4. In a two s com T repres ati §r \2:;7 of itoa does not handle the largest
negative number lue n equal to % @ xplain why not. Modify it to print that value

COI’I'GC mac

Exercise 3 5 Werite the function it ob (n, s, b) that converts the integer n into a base b character
representation in the string s. In particular, itob (n, s, 16) formats s as a hexadecimal integer in s.

Exercise 3-6. Write a version of itoa that accepts three arguments instead of two. The third argument is a
minimum field width; the converted number must be padded with blanks on the left if necessary to make it
wide enough.

3.7 Break and Continue

It is sometimes convenient to be able to exit from a loop other than by testing at the top or bottom. The
break statement provides an early exit from for, while, and do, just as from switch. A break causes
the innermost enclosing loop or switch to be exited immediately.

The following function, t rim, removes trailing blanks, tabs and newlines from the end of a string, using a
break to exit from a loop when the rightmost non-blank, non-tab, non-newline is found.

/* trim: remove trailing blanks, tabs, newlines */
int trim(char s[])

{

int n;

for (n = strlen(s)-1; n >= 0; n—--)

Chapter 3 - Control Flow 7

8 Chapter 3 - Control Flow

if (s[n] !'= ' ' && s[n] !'= '"\t' && s[n] != "\n')
break;
s[n+l] = "\0';

return n;

strlen returns the length of the string. The for loop starts at the end and scans backwards looking for the
first character that is not a blank or tab or newline. The loop is broken when one is found, or when n becomes
negative (that is, when the entire string has been scanned). You should verify that this is correct behavior even
when the string is empty or contains only white space characters.

The cont inue statement is related to break, but less often used; it causes the next iteration of the
enclosing for, while, or do loop to begin. In the while and do, this means that the test part is executed
immediately; in the for, control passes to the increment step. The cont inue statement applies only to
loops, not to switch. A continue inside a switch inside a loop causes the next loop iteration.

As an example, this fragment processes only the non-negative elements in the array a; negative values are
skipped.

for (i = 0; 1 < n; i++)
if (af[i]l < 0) /* skip negative elements */
continue;

/* do positive elements */

The continue statement is often used when the part of the loop that follows is complicated, so that
reversing a test and indenting another level would nest the program too deeply. k
\e cO-

3.8 Goto and labels a

C provides the infinitely-abusable got o statemen ranch a'y, the got o statement is
eds to wnte

never necessary, and in practice it is alm(ﬁ‘l‘@ cQ a%/ e have not used goto in
this book. \ e

Nevertheless, t % sﬁuatmn@ may fmd a place. The most common is to abandon
processing in sote deeply nested structlire, suchas breaking out of two or more loops at once. The break
statement cannot be used directly since it only exits from the innermost loop. Thus:

for (...)
for (...) {

if (disaster)
goto error;

error:
/* clean up the mess */

This organization is handy if the error-handling code is non-trivial, and if errors can occur in several places.

A label has the same form as a variable name, and is followed by a colon. It can be attached to any statement
in the same function as the got o. The scope of a label is the entire function.

As another example, consider the problem of determining whether two arrays a and b have an element in
common. One possibility is

for (i = 0; i < n; i++)
for (j = 0; J < m; J++)
if (afli]l == bl3l])

8 Chapter 3 - Control Flow

4 Chapter 4 - Functions and Program Structure
4.2 Functions Returning Non-integers

So far our examples of functions have returned either no value (void) or an int. What if a function must
return some other type? many numerical functions like sgrt, sin, and cos return double; other
specialized functions return other types. To illustrate how to deal with this, let us write and use the function
atof (s), which converts the string s to its double-precision floating-point equivalent. at of if an extension
of atoi, which we showed versions of in Chapters 2 and 3. It handles an optional sign and decimal point, and
the presence or absence of either part or fractional part. Our version is not a high-quality input conversion
routine; that would take more space than we care to use. The standard library includes an at o f; the header
<stdlib.h> declares it.

First, at of itself must declare the type of value it returns, since it is not int. The type name precedes the
function name:

"\t%g\n", sum += atof(line));
return O;

}
The declaration
double sum, atof (char []);

says that sum is a double variable, and that at of is a function that takes one char [] argument and
returns a double.

The function at of must be declared and defined consistently. If at of itself agd m main have
inconsistent types in the same source file, the error will be detected by t B'ut 1f (as is more likely)
atof were compiled separately, the mismatch would not m’ ould return a double that
main would treat as an int, and meaningless answ ﬁ

xfnzlons this might seem surprising.
rototype, a function is implicitly declared by

In the light of what we have sald h(&‘ Qratlon f@l‘Zﬂ
p

The reason a mismatc at if there i

its first appear@ ﬁ ress10n su?ag
sum += atof (line)

If a name that has not been previously declared occurs in an expression and is followed by a left parentheses,

it is declared by context to be a function name, the function is assumed to return an int, and nothing is
assumed about its arguments. Furthermore, if a function declaration does not include arguments, as in

double atof ();

that too is taken to mean that nothing is to be assumed about the arguments of at of; all parameter checking
is turned off. This special meaning of the empty argument list is intended to permit older C programs to
compile with new compilers. But it's a bad idea to use it with new C programs. If the function takes
arguments, declare them; if it takes no arguments, use void.

Given atof, properly declared, we could write at oi (convert a string to int) in terms of it:

/* atoi: convert string s to integer using atof */
int atoi(char s[])
{

double atof (char s[]);

return (int) atof (s);

4 Chapter 4 - Functions and Program Structure

6 Chapter 5 - Pointers and Arrays

pa: patl: pat2:

N

alo]

These remarks are true regardless of the type or size of the variables in the array a. The meaning of ““adding 1
to a pointer," and by extension, all pointer arithmetic, is that pa+1 points to the next object, and pa+1i points
to the i-th object beyond pa.

The correspondence between indexing and pointer arithmetic is very close. By definition, the value of a
variable or expression of type array is the address of element zero of the array. Thus after the assignment

pa = &al0];

pa and a have identical values. Since the name of an array is a synonym for the location of the initial element,
the assignment pa=&a [0] can also be written as

e - \)\4

Rather more surprising, at first sight, is the fact that a reference to a [5 %n as * (a+i).In
evaluating a[1], C convertsitto * (a+1i) 1mmed1ately, th t etfurvalent. Applying the operator

& to both parts of this equivalence, it follows that &] re als i 1 a+1i is the address of the
i nyibpaisa p01n 'Zes s might use it with a

i-th element beyond a. As the other 51de ﬁ
subscript; pa [1] is 1dentlcal.to * ort, an ression is equivalent to one

written as a pomter an@q\
There is one di rence between an arraE g % a pointer that must be kept in mind. A pointer is a

variable, so pa=a and pa++ are legal. But an array name is not a variable; constructions like a=pa and a++
are illegal.

When an array name is passed to a function, what is passed is the location of the initial element. Within the
called function, this argument is a local variable, and so an array name parameter is a pointer, that is, a
variable containing an address. We can use this fact to write another version of st r1en, which computes the
length of a string.

/* strlen: return length of string s */
int strlen(char *s)

{

int n;
for (n = 0; *s != '"\0', s++)

n++;
return nj;

Since s is a pointer, incrementing it is perfectly legal; s++ has no effect on the character string in the function
that called st r1en, but merely increments st rlen's private copy of the pointer. That means that calls like

strlen("hello, world"); /* string constant */
strlen (array) ; /* char array[100]; */

6 Chapter 5 - Pointers and Arrays

8 Chapter 5 - Pointers and Arrays

The easiest implementation is to have alloc hand out pieces of a large character array that we will call
allocbuf. This array is private to alloc and afree. Since they deal in pointers, not array indices, no
other routine need know the name of the array, which can be declared static in the source file containing
alloc and afree, and thus be invisible outside it. In practical implementations, the array may well not even
have a name; it might instead be obtained by calling malloc or by asking the operating system for a pointer
to some unnamed block of storage.

The other information needed is how much of allocbuf has been used. We use a pointer, called allocp,
that points to the next free element. When alloc is asked for n characters, it checks to see if there is enough
room left in allocbuf. If so, alloc returns the current value of allocp (i.e., the beginning of the free
block), then increments it by n to point to the next free area. If there is no room, alloc returns zero.

afree (p) merely sets allocp to p if p is inside allocbuf.

before call to alloc:
allocp: -~

allocbuf:

L

- Il USe —» = free
after call to alloc:

allocbuf: | ~ 9 ‘\)\A
- Tl use > Tee ——»
s

O
(f @m leN

#define ALLOCSIZE lOOOO SNL ‘% 6
static char a t@a alloc */
static chP = allocb g free position */

char *alloc (int n) /* return pointer to n characters */

{

if (allocbuf + ALLOCSIZE - allocp >= n) { /* it fits */
allocp += nj;
return allocp - n; /* old p */

} else /* not enough room */
return 0;

}

void afree(char *p) /* free storage pointed to by p */

{
if (p >= allocbuf && p < allocbuf + ALLOCSIZE)

allocp = p;

In general a pointer can be initialized just as any other variable can, though normally the only meaningful
values are zero or an expression involving the address of previously defined data of appropriate type. The
declaration

static char *allocp = allocbuf;

defines allocp to be a character pointer and initializes it to point to the beginning of allocbuf, which is
the next free position when the program starts. This could also have been written

8 Chapter 5 - Pointers and Arrays

Chapter 5 - Pointers and Arrays 15

is counted down.

With input and output under control, we can proceed to sorting. The quicksort from Chapter 4 needs minor
changes: the declarations have to be modified, and the comparison operation must be done by calling
strcmp. The algorithm remains the same, which gives us some confidence that it will still work.

/* gsort: sort v[left]...v[right] into increasing order */
void gsort (char *v[], int left, int right)
{

int i, last;
void swap(char *v[], int i, int 3J);

if (left >= right) /* do nothing if array contains */
return; /* fewer than two elements */
swap (v, left, (left + right)/2);
last = left;
for (i = left+l; 1 <= right; i++)
if (strcmp(v[i], v[left]) < 0)
swap (v, ++last, 1i);
swap (v, left, last);
gsort (v, left, last-1);
gsort (v, last+l, right);

Similarly, the swap routine needs only trivial changes:

/* swap: interchange v[i] and v[]j] */ K

void swap (char *v[], int i, int 3J)

| e
char *temp; a\ .
o, eS
S o Not
] = temp:
. [3] = temp; \N .‘(O g
Since i \l \ement Co 'apt r) is a character pointer, t emp must be also, so one can be
A yodi

copied other.

<
o
[

Exercise 5-7. Rewrite readlines to store lines in an array supplied by ma in, rather than calling alloc to
maintain storage. How much faster is the program?

5.7 Multi-dimensional Arrays

C provides rectangular multi-dimensional arrays, although in practice they are much less used than arrays of
pointers. In this section, we will show some of their properties.

Consider the problem of date conversion, from day of the month to day of the year and vice versa. For
example, March 1 is the 60th day of a non-leap year, and the 61st day of a leap year. Let us define two
functions to do the conversions: day_of_year converts the month and day into the day of the year, and
month_day converts the day of the year into the month and day. Since this latter function computes two
values, the month and day arguments will be pointers:

month_day (1988, 60, &m, &d)
sets m to 2 and d to 29 (February 29th).

These functions both need the same information, a table of the number of days in each month (" thirty days
hath September ..."). Since the number of days per month differs for leap years and non-leap years, it's easier

Chapter 5 - Pointers and Arrays 15

20 Chapter 5 - Pointers and Arrays

This shows that the format argument of print f can be an expression too.

As a second example, let us make some enhancements to the pattern-finding program from Section 4.1. If you
recall, we wired the search pattern deep into the program, an obviously unsatisfactory arrangement. Following
the lead of the UNIX program grep, let us enhance the program so the pattern to be matched is specified by
the first argument on the command line.

#include <stdio.h>
#include <string.h>
fdefine MAXLINE 1000

int getline (char *line, int max);

/* find: print lines that match pattern from 1lst arg */
main (int argc, char *argv([])
{

char line[MAXLINE];

int found = 0;

if (argc != 2)
printf ("Usage: find pattern\n");
else
while (getline(line, MAXLINE) > 0)
if (strstr(line, argv[1l]) != NULL) {
printf ("%s", line);
found++;

}

return found; \)K
} CO .

The standard library function strstr (s, t) returns a pointer to {@6&)%06 of the string t in the
string s, or NULL if there is none. It is declared in <strN

The model can now be elaborated to il us% pomte onQS} ose we want to allow two
th hnes exce ‘:?t?lat

optional arguments. One sa us\g tch the pattern;" the second says
ine nu

““precede each?n

A common convention for C programs gn UNIX systems is that an argument that begins with a minus sign
introduces an optional flag or parameter. If we choose —x (for ““except") to signal the inversion, and —n
("number") to request line numbering, then the command

find -x —-npattern
will print each line that doesn't match the pattern, preceded by its line number.

Optional arguments should be permitted in any order, and the rest of the program should be independent of
the number of arguments that we present. Furthermore, it is convenient for users if option arguments can be
combined, as in

find —nx pattern
Here is the program:

#include <stdio.h>
#include <string.h>
fdefine MAXLINE 1000

int getline (char *line, int max);

/* find: print lines that match pattern from 1lst arg */

20 Chapter 5 - Pointers and Arrays

2 Chapter 6 - Structures

is syntactically analogous to
int x, vy, z;

in the sense that each statement declares x, y and z to be variables of the named type and causes space to be
set aside for them.

A structure declaration that is not followed by a list of variables reserves no storage; it merely describes a
template or shape of a structure. If the declaration is tagged, however, the tag can be used later in definitions
of instances of the structure. For example, given the declaration of point above,

struct point pt;

defines a variable pt which is a structure of type st ruct point. A structure can be initialized by
following its definition with a list of initializers, each a constant expression, for the members:

struct maxpt = { 320, 200 };

An automatic structure may also be initialized by assignment or by calling a function that returns a structure
of the right type.

A member of a particular structure is referred to in an expression by a construction of the form
structure-name.member

The structure member operator ~." connects the structure name and the member name. @@lt{[
coordinates of the point pt, for instance,

printf ("%d, %d", pt.x, pt.y) NO‘-
or to compute the distance from thW x@g\ % 0"
double di (@\l \Q 0

dist = sqgr%t ((double)pt.x * gouble ypt.y * pt.v);

Structures can be nested. One representation of a rectangle is a pair of points that denote the diagonally
opposite corners:

1!
B

struct rect {
struct point ptl;
struct point pt2;
}i

The rect structure contains two point structures. If we declare screen as

2 Chapter 6 - Structures

6 Chapter 6 - Structures

{ "break", 0 },
{ "case", 0 },

but inner braces are not necessary when the initializers are simple variables or character strings, and when all
are present. As usual, the number of entries in the array keytab will be computed if the initializers are
present and the [] is left empty.

The keyword counting program begins with the definition of keytab. The main routine reads the input by
repeatedly calling a function getword that fetches one word at a time. Each word is looked up in keytab
with a version of the binary search function that we wrote in Chapter 3. The list of keywords must be sorted in
increasing order in the table.

"$4d %s\n",
keytab[n] .count, keytab[n].word);
return 0;

}
/* binsearch: find word in tab[0]...tab[n-1] */

int binsearch(char *word, struct key tabl], int n)
{

int cond;

int low, high, mid;

low = 0;
high = n - 1;

while (low <= high) { \A
mid = (low+high) / 2; u
if ((cond = strcmp(word, tab[mid].word)) < 0)
high = mid - 1; a\e .
else if (cond > 0) tes
low = mid + 1; NO
else m
return mid; ‘(O
} \N

e e 1Y

We will show the function getword In a moment; for now it suffices to say that each call to getword finds
a word, which is copied into the array named as its first argument.

The quantity NKEYS is the number of keywords in keytab. Although we could count this by hand, it's a lot
easier and safer to do it by machine, especially if the list is subject to change. One possibility would be to

terminate the list of initializers with a null pointer, then loop along keytab until the end is found.

But this is more than is needed, since the size of the array is completely determined at compile time. The size
of the array is the size of one entry times the number of entries, so the number of entries is just

size of keytab / size of struct key

C provides a compile-time unary operator called sizeof that can be used to compute the size of any object.
The expressions

sizeof object
and

sizeof (type name)

6 Chapter 6 - Structures

Chapter 6 - Structures 7

yield an integer equal to the size of the specified object or type in bytes. (Strictly, sizeof produces an
unsigned integer value whose type, size_t, is defined in the header <stddef .h>.) An object can be a
variable or array or structure. A type name can be the name of a basic type like int or double, or a derived
type like a structure or a pointer.

In our case, the number of keywords is the size of the array divided by the size of one element. This
computation is used in a #define statement to set the value of NKEYS:

#define NKEYS (sizeof keytab / sizeof (struct key))

Another way to write this is to divide the array size by the size of a specific element:
#define NKEYS (sizeof keytab / sizeof (keytab[0]))

This has the advantage that it does not need to be changed if the type changes.

A sizeof can not be used in a #1 f line, because the preprocessor does not parse type names. But the
expression in the #de fine is not evaluated by the preprocessor, so the code here is legal.

Now for the function getword. We have written a more general getword than is necessary for this
program, but it is not complicated. getword fetches the next ~“word" from the input, where a word is either a
string of letters and digits beginning with a letter, or a single non-white space character. The function value is
the first character of the word, or EOF for end of file, or the character itself if it is not alphabetic.

/* getword: get next word or character from input */ K

int getword(char *word, int 1lim) CO .

{

int ¢, getch(void);
void ungetch (int); t
char *w = word; NO

while (isspacew *&rﬁm

L ‘\Ee
prett 5a0e

*w o= '\0"';
return c;
}
for (; ——lim > 0; w++)
if (!isalnum(*w = getch())) {
ungetch (*w) ;
break;

}
*y = v\ov,.

return word[O0];

getword uses the get ch and ungetch that we wrote in Chapter 4. When the collection of an
alphanumeric token stops, getword has gone one character too far. The call to ungetch pushes that
character back on the input for the next call. getword also uses i sspace to skip whitespace, isalpha to
identify letters, and i salnum to identify letters and digits; all are from the standard header <ctype.h>.

Exercise 6-1. Our version of getword does not properly handle underscores, string constants, comments, or
preprocessor control lines. Write a better version.

Chapter 6 - Structures 7

8 Chapter 6 - Structures
6.4 Pointers to Structures

To illustrate some of the considerations involved with pointers to and arrays of structures, let us write the
keyword-counting program again, this time using pointers instead of array indices.

The external declaration of keytab need not change, but main and binsearch do need modification.

"$4d %s\n", p->count, p->word);
return O;

}

/* binsearch: find word in tab[0]...tab[n-1] */
struct key *binsearch(char *word, struck key *tab, int n)
{

int cond;

struct key *low = &tab[0];

struct key *high = &tab[n];

struct key *mid;

while (low < high) {
mid = low + (high-low) / 2;
if ((cond = strcmp(word, mid->word)) < 0)
high = mid;
else 1if (cond > 0)
low = mid + 1;
else

return mid; K
) U
return NULL; O .

| sa\
There are several things worthy of note here. First, t ust indicate that it
returns a pointer to struct key insteago ?ﬁ:\ sis declare(‘) nctlon prototype and in
binsearch.If binsearch f1n eturns a it fai

&t)
Second, the CIE@IV @E’zt ab are@wa@@)y 1nters This requires significant changes in

binsearch

S, it returns NULL.

The initializers for 1ow and high are now pointers to the beginning and just past the end of the table.
The computation of the middle element can no longer be simply
mid = (low+high) / 2 /* WRONG */

because the addition of pointers is illegal. Subtraction is legal, however, so high-1ow is the number of
elements, and thus

mid = low + (high-low) / 2
sets mid to the element halfway between 1ow and high.
The most important change is to adjust the algorithm to make sure that it does not generate an illegal pointer
or attempt to access an element outside the array. The problem is that stab[-1] and &tab [n] are both
outside the limits of the array tab. The former is strictly illegal, and it is illegal to dereference the latter. The

language definition does guarantee, however, that pointer arithmetic that involves the first element beyond the
end of an array (that is, &tab [n]) will work correctly.

In main we wrote

8 Chapter 6 - Structures

Chapter 7 - Input and Output

11

To show that there is nothing special about functions like fgets and fputs, here they are, copied from the

standard library on our system:

/* fgets: get at most n chars from iop */
char *fgets(char *s, int n, FILE *iop)
{

register int c;

register char *cs;

cs = s;
while (--n > 0 && (c = getc(iop)) != EOF)
if ((*cs++ = c) == '\n')
break;
*cs = "\0';
return (c == EOF && cs == s) ? NULL : s;

}
/* fputs: put string s on file iop */
int fputs(char *s, FILE *iop)
{
int c;
while (c = *s++)

putc(c, iop);
return ferror (iop) ? EOF : 0;

For no obvious reason, the standard specifies different return values for ferror and fpu \(
It is easy to implement our get 1ine from fgets:
/* getline: read a line, return len
int getline(char *line, int max

L (fgets(llne "*Q ——{;36 O" 2’3‘7

retur e
Plfﬁy)strlev age

Exercise 7-6. Write a program to compare two files, printing the first line where they differ.

Exercise 7-7. Modify the pattern finding program of Chapter 5 to take its input from a set of named files or,

no files are named as arguments, from the standard input. Should the file name be printed when a matching
line is found?

Exercise 7-8. Write a program to print a set of files, starting each new one on a new page, with a title and a
running page count for each file.

7.8 Miscellaneous Functions

if

The standard library provides a wide variety of functions. This section is a brief synopsis of the most useful.

More details and many other functions can be found in Appendix B.

7.8.1 String Operations

We have already mentioned the string functions strlen, strcpy, strcat, and st rcmp, found in
<string.h>.In the following, s and t are char *'s,and c and n are ints.

Chapter 7 - Input and Output

11

10 Chapter 8 - The UNIX System Interface

#define S_IFCHR 0020000 /* character special */
#define S_IFBLK 0060000 /* block special */
#define S_IFREG 0010000 /* regular */

/* oLl x/

Now we are ready to write the program fsize. If the mode obtained from stat indicates that a file is not a
directory, then the size is at hand and can be printed directly. If the name is a directory, however, then we
have to process that directory one file at a time; it may in turn contain sub-directories, so the process is
recursive.

The main routine deals with command-line arguments; it hands each argument to the function fsize.

#include <stdio.h>
#include <string.h>
#include "syscalls.h"

#include <fcntl.h> /* flags for read and write */
#include <sys/types.h> /* typedefs */
#include <sys/stat.h> /* structure returned by stat */

#include "dirent.h"
void fsize (char *)

/* print file name */
main(int argc, char **argv)
{

if (argc == 1) /* default: current directory */

fsize("."); K
elsewhile (-—argc > 0) \e ‘CO ‘u

fsize (*++argv) ;

} return 0; Ote

The function f£size prints the size of thi 1 1s a d ecto w ’3&,1 ze first calls dirwalk
to handle all the files in it Nete names S IR are used to decide if the file is a
directory. Parent es ecause the ie is lower than that o

int stat (char * struct sta;

void dlrwalk(char *, void (*fcn (char *)

/* fsize: print the name of file "name" */
void fsize (char *name)

{
struct stat stbuf;

if (stat (name, &stbuf) == -1) {
fprintf (stderr, "fsize: can't access %s\n", name);
return;

}

if ((stbuf.st_mode & S_IFMT) == S_IFDIR)

dirwalk (name, fsize);
printf ("$81d %s\n", stbuf.st_size, name);

The function dirwalk is a general routine that applies a function to each file in a directory. It opens the
directory, loops through the files in it, calling the function on each, then closes the directory and returns. Since
fsize calls dirwalk on each directory, the two functions call each other recursively.

#define MAX_PATH 1024

/* dirwalk: apply fcn to all files in dir */
void dirwalk (char *dir, wvoid (*fcn) (char *))

10 Chapter 8 - The UNIX System Interface

14 Chapter 8 - The UNIX System Interface
unsigned size; /* size of this block */
}os;
Align x; /* force alignment of blocks */

}i

typedef union header Header;
The A1ign field is never used; it just forces each header to be aligned on a worst-case boundary.
In malloc, the requested size in characters is rounded up to the proper number of header-sized units; the
block that will be allocated contains one more unit, for the header itself, and this is the value recorded in the
s1ize field of the header. The pointer returned by malloc points at the free space, not at the header itself.

The user can do anything with the space requested, but if anything is written outside of the allocated space the
list is likely to be scrambled.

/r points to next free block
/ S1Z€

A block returned by malloc \A

cO-

The size field is necessary because the blocks controlled by mall g&\%tlguous - it is not

address returned to user

possible to compute sizes by pointer arithmetic. NO

The variable base is used to get start i NULL it i e fzéﬂ of malloc, thena
degenerate free list is create e block of e% m’mts to itself. In any case, the free list is
then searched. \r\ e block of gins at the point (f reep) where the last block
was found; this lps keep tl?s ous If a too-big block is found, the tail end is returned to
the user; in this way the header of the ®riginal needs only to have its size adjusted. In all cases, the pointer

returned to the user points to the free space within the block, which begins one unit beyond the header.

static Header base; /* empty list to get started */
static Header *freep = NULL; /* start of free list */
/* malloc: general-purpose storage allocator */

void *malloc (unsigned nbytes)

{
Header *p, *prevp;
Header *moreroce (unsigned);
unsigned nunits;

nunits = (nbytes+sizeof (Header)-1)/sizeof (header) + 1;
if ((prevp = freep) == NULL) { /* no free list yet */
base.s.ptr = freeptr = prevptr = &base;
base.s.size = 0;

}
for (p = prevp->s.ptr; ; prevp = p, p = p->s.ptr) {
if (p—->s.size >= nunits) { /* big enough */
if (p—->s.size == nunits) /* exactly */
prevp->s.ptr = p->s.ptr;
else { /* allocate tail end */
p—->s.size —-= nunits;
p += p->s.size;

14 Chapter 8 - The UNIX System Interface

Appendix A - Reference Manual 11

A.7.3.3 Structure References

A postfix expression followed by a dot followed by an identifier is a postfix expression. The first operand
expression must be a structure or a union, and the identifier must name a member of the structure or union.
The value is the named member of the structure or union, and its type is the type of the member. The
expression is an Ivalue if the first expression is an lvalue, and if the type of the second expression is not an
array type.

A postfix expression followed by an arrow (built from - and >) followed by an identifier is a postfix
expression. The first operand expression must be a pointer to a structure or union, and the identifier must
name a member of the structure or union. The result refers to the named member of the structure or union to
which the pointer expression points, and the type is the type of the member; the result is an Ivalue if the type
is not an array type.

Thus the expression E1—->MOS is the same as (*E1) .MOS. Structures and unions are discussed in Par.A.8.3.

In the first edition of this book, it was already the rule that a member name in such an expression had to belong to the
structure or union mentioned in the postfix expression; however, a note admitted that this rule was not firmly enforced.
Recent compilers, and ANSI, do enforce it.

A.7.3.4 Postfix Incrementation

A postfix expression followed by a ++ or —— operator is a postfix expression. The value of the expression is
the value of the operand. After the value is noted, the operand is incremented ++ or decremgnted —— by 1. The
operand must be an lvalue; see the discussion of additive operators (Par.A.7.7) and assi ¥Par.A.7. 17)
for further constraints on the operand and details of the operation. The result 1s¢

.

A.7.4 Unary Operators

N0 T
e T A of 7
rPFo o age >

——unary expression
unary-operator cast-expression
sizeof unary-expression
sizeof(type-name)

unary operator: one of
& X+ -~ !

A.7.4.1 Prefix Incrementation Operators

A unary expression followed by a ++ or —— operator is a unary expression. The operand is incremented ++ or
decremented —— by 1. The value of the expression is the value after the incrementation (decrementation). The
operand must be an lvalue; see the discussion of additive operators (Par.A.7.7) and assignment (Par.A.7.17)
for further constraints on the operands and details of the operation. The result is not an lvalue.

A.7.4.2 Address Operator

The unary operator & takes the address of its operand. The operand must be an Ivalue referring neither to a
bit-field nor to an object declared as register, or must be of function type. The result is a pointer to the
object or function referred to by the lvalue. If the type of the operand is 7, the type of the result is ~ pointer to
T'll

Appendix A - Reference Manual 11

Appendix A - Reference Manual 19

type specifier:
void

char

short

int

long

float
double
signed
unsigned
struct-or-union-specifier
enum-specifier
typedef-name

At most one of the words Long or short may be specified together with int; the meaning is the same if
int is not mentioned. The word 1ong may be specified together with double. At most one of signed or
unsigned may be specified together with int or any of its short or 1ong varieties, or with char. Either
may appear alone in which case int is understood. The signed specifier is useful for forcing char objects
to carry a sign; it is permissible but redundant with other integral types.

Otherwise, at most one type-specifier may be given in a declaration. If the type-specifier is missing from a
declaration, it is taken to be int.

Types may also be qualified, to indicate special properties of the objects being declared. \A

type-qualifier: \ CO

const

volatile te
Type qualifiers may appear with &‘t mﬁer m& ?ms'oe initialized, but not thereafter

assigned to. There are ion- depe d r volatile objects.

@ oec\!ld volat p&%y new w1th the ANSI standard. The purpose of const is to announce objects
h nl

at may be placed in rea and perhaps to increase opportunities for optimization. The purpose of
volatile is to force an implementation to suppress optimization that could otherwise occur. For example, for a machine
with memory-mapped input/output, a pointer to a device register might be declared as a pointer to volatile, in order to
prevent the compiler from removing apparently redundant references through the pointer. Except that it should diagnose
explicit attempts to change const objects, a compiler may ignore these qualifiers.

A.8.3 Structure and Union Declarations

A structure is an object consisting of a sequence of named members of various types. A union is an object that
contains, at different times, any of several members of various types. Structure and union specifiers have the
same form.

struct-or-union-specifier:
struct-or-union identifieropt{ struct-declaration-list }
struct-or-union identifier

struct-or-union:
struct

union

A struct-declaration-list is a sequence of declarations for the members of the structure or union:

Appendix A - Reference Manual 19

20 Appendix A - Reference Manual

struct-declaration-list:
struct declaration
struct-declaration-list struct declaration

struct-declaration: specifier-qualifier-list struct-declarator-list;

specifier-qualifier-list:
type-specz:ﬁ:er specz:ﬁ:er-quall:fier-ll:stopl
type-qualifier specy‘ter-quahﬁer-llstupl

struct-declarator-list:
struct-declarator
struct-declarator-list , struct-declarator

Usually, a struct-declarator is just a declarator for a member of a structure or union. A structure member may
also consist of a specified number of bits. Such a member is also called a bit-field; its length is set off from the

declarator for the field name by a colon.

struct-declarator:
declarator declaratoropl : constant-expression

A type specifier of the form
struct-or-union identifier { struct-declaration-list } K

declares the identifier to be the fag of the structure or union specified by the lis gv @Q declaration in
the same or an inner scope may refer to the same type by using the taé% ithout the list:

struct-or-union identifier NO l7

If a specifier with a tag but wit ts&ars when Q’Sared an incomplete type is specified.
Objects with an i;co r¢ or union typeynay entioned in contexts where their size is not

needed, for ex clarations (% ik, for specifying a pointer, or for creating a t ypedef, but
not otherwise. The type becomes comyplete™on BCcurrence of a subsequent specifier with that tag, and
containing a declaration list. Even in specifiers with a list, the structure or union type being declared is
incomplete within the list, and becomes complete only at the } terminating the specifier.

A structure may not contain a member of incomplete type. Therefore, it is impossible to declare a structure or
union containing an instance of itself. However, besides giving a name to the structure or union type, tags
allow definition of self-referential structures; a structure or union may contain a pointer to an instance of
itself, because pointers to incomplete types may be declared.

A very special rule applies to declarations of the form

struct-or-union identifier;
that declare a structure or union, but have no declaration list and no declarators. Even if the identifier is a
structure or union tag already declared in an outer scope (Par.A.11.1), this declaration makes the identifier the

tag of a new, incompletely-typed structure or union in the current scope.

This recondite is new with ANSL. It is intended to deal with mutually-recursive structures declared in an inner scope, but
whose tags might already be declared in the outer scope.

A structure or union specifier with a list but no tag creates a unique type; it can be referred to directly only in
the declaration of which it is a part.

20 Appendix A - Reference Manual

24 Appendix A - Reference Manual

N

and the type of the identifier in the declaration T D1 is ~“type-modifier T," the type of the identifier of D is
“type-modifier type-qualifier-list pointer to T." Qualifiers following * apply to pointer itself, rather than to the
object to which the pointer points.

For example, consider the declaration
int *apl[];

Here, ap [] plays the role of D1; a declaration ~"int ap[]" (below) would give ap the type “array of int,"
the type-qualifier list is empty, and the type-modifier is ~~array of." Hence the actual declaration gives ap the
type "array to pointers to int."

As other examples, the declarations

int i1, *pi, *const cpi = 1
const int ci = 3, *pci;

declare an integer i and a pointer to an integer pi. The value of the constant pointer cpi may not be
changed; it will always point to the same location, although the value to which it refers may be altered. The
integer c1i is constant, and may not be changed (though it may be initialized, as here.) The type of pc1i is
““pointer to const int," and pci itself may be changed to point to another place, but the value to which it
points may not be altered by assigning through pci.

A.8.6.2 Array Declarators

uk

In a declaration T D where D has the form CO .

a\e-

D1 [constant—expressionopt] Ote
and the type of the identifier in the declargtio Qm »modzﬁer ’(f the identifier of D is
““type-modifier array of T." If the CORS n'x 10n 18 ntegral type, and value greater
than 0. If the constant ex&e" Wying the bound missing, the array has an incomplete type.

An array may IP Xstructed from an lagype from a pointer, from a structure or union, or from
another array (to generate a multi-dimensional array). Any type from which an array is constructed must be
complete; it must not be an array of structure of incomplete type. This implies that for a multi-dimensional
array, only the first dimension may be missing. The type of an object of incomplete aray type is completed by
another, complete, declaration for the object (Par.A.10.2), or by initializing it (Par.A.8.7). For example,

float fall7], *afpl[l7];

declares an array of £1oat numbers and an array of pointers to £ 1oat numbers. Also,
static int x3d[3]1[5]1[7];

declares a static three-dimensional array of integers, with rank 3 X 5 X 7. In complete detail, x3d is an array
of three items: each item is an array of five arrays; each of the latter arrays is an array of seven integers. Any
of the expressions x3d, x3d[1],x3d[1][J],x3d[1] [J] [k] may reasonably appear in an expression.
The first three have type ““array,", the last has type int. More specifically, x3d [i] [J] is an array of 7
integers, and x3d [1] is an array of 5 arrays of 7 integers.

The array subscripting operation is defined so that E1 [E2] is identical to * (E1+E2) . Therefore, despite its
asymmetric appearance, subscripting is a commutative operation. Because of the conversion rules that apply
to + and to arrays (Pars.A6.6, A.7.1, A.7.7), if E1 is an array and E2 an integer, then E1 [E2] refers to the
E2-th member of E1.

24 Appendix A - Reference Manual

26 Appendix A - Reference Manual
declaration.
For example, the declaration

int £(), *fpi(), (*pfi) O);

declares a function f returning an integer, a function fp1i returning a pointer to an integer, and a pointer pfi
to a function returning an integer. In none of these are the parameter types specified; they are old-style.

In the new-style declaration

int strcpy(char *dest, const char *source), rand(void);

strcpy is a function returning int, with two arguments, the first a character pointer, and the second a
pointer to constant characters. The parameter names are effectively comments. The second function rand
takes no arguments and returns int.

Function declarators with parameter prototypes are, by far, the most important language change introduced by the ANSI
standard. They offer an advantage over the ““old-style" declarators of the first edition by providing error-detection and
coercion of arguments across function calls, but at a cost: turmoil and confusion during their introduction, and the
necessity of accomodating both forms. Some syntactic ugliness was required for the sake of compatibility, namely void
as an explicit marker of new-style functions without parameters.

The ellipsis notation **, .. ." for variadic functions is also new, and, together with the macros in the
standard header <stdarg.h>, formalizes a mechanism that was officially forbidden but ugofficially
condoned in the first edition. O

These notations were adapted from the C++ language. esa\

A.8.7 Initialization orm N l’(
When an object is declared 1\ts ar&‘may speﬁ alQue for the identifier being declared.

The initializer is re is either ange r a list of initializers nested in braces. A list may
end with a com@ ty for neat l@ﬁ@

initializer:
assignment-expression
{ initializer-list }
{ initializer-list , }

initializer-list:
initializer
initializer-list , initializer

All the expressions in the initializer for a static object or array must be constant expressions as described in
Par.A.7.19. The expressions in the initializer for an aut o or register object or array must likewise be
constant expressions if the initializer is a brace-enclosed list. However, if the initializer for an automatic
object is a single expression, it need not be a constant expression, but must merely have appropriate type for
assignment to the object.

The first edition did not countenance initialization of automatic structures, unions, or arrays. The ANSI standard allows it,
but only by constant constructions unless the initializer can be expressed by a simple expression.

A static object not explicitly initialized is initialized as if it (or its members) were assigned the constant 0. The
initial value of an automatic object not explicitly intialized is undefined.

26 Appendix A - Reference Manual

Appendix A - Reference Manual 35

definitions for an externally linked object, throughout all the translation units of the program, are considered together
instead of in each translation unit separately. If a definition occurs somewhere in the program, then the tentative
definitions become merely declarations, but if no definition appears, then all its tentative definitions become a definition
with initializer O.

A.11 Scope and Linkage

A program need not all be compiled at one time: the source text may be kept in several files containing
translation units, and precompiled routines may be loaded from libraries. Communication among the functions
of a program may be carried out both through calls and through manipulation of external data.

Therefore, there are two kinds of scope to consider: first, the lexical scope of an identifier which is the region
of the program text within which the identifier's characteristics are understood; and second, the scope
associated with objects and functions with external linkage, which determines the connections between
identifiers in separately compiled translation units.

A.11.1 Lexical Scope

Identifiers fall into several name spaces that do not interfere with one another; the same identifier may be used
for different purposes, even in the same scope, if the uses are in different name spaces. These classes are:
objects, functions, typedef names, and enum constants; labels; tags of structures or unions, and enumerations;
and members of each structure or union individually.

their own name space; tags of structures and unions each had a separate space, and in some_im jons enumerations
tags did as well; putting different kinds of tags into the same space is a new restrictiqQ @ qstiiportant departure from
the first edition is that each structure or union creates a separate name s doers, so that the same name may

appear in several different structures. This rule has been COK@% eral years.
'ﬁﬂ

The lexical scope of an object or function { exter 1 %ﬁ begins at the end of its
declarator and persists to the end tion unj S. The scope of a parameter of a
function definition begi start of the bl functlon, and persists through the function; the
scope Q %@unctlon de the end of the declarator. The scope of an identifier
declare ad of a blo?a end of its declarator, and persists to the end of the block. The
scope of a label is the whole df the function in which it appears. The scope of a structure, union, or
enumeration tag, or an enumeration constant, begins at its appearance in a type specifier, and persists to the
end of a translation unit (for declarations at the external level) or to the end of the block (for declarations
within a function).

These rules differ in several ways from those described in the first edition of this manual. Labels dimpreviously have

If an identifier is explicitly declared at the head of a block, including the block constituting a function, any
declaration of the identifier outside the block is suspended until the end of the block.

A.11.2 Linkage

Within a translation unit, all declarations of the same object or function identifier with internal linkage refer to
the same thing, and the object or function is unique to that translation unit. All declarations for the same
object or function identifier with external linkage refer to the same thing, and the object or function is shared
by the entire program.

As discussed in Par.A.10.2, the first external declaration for an identifier gives the identifier internal linkage if
the static specifier is used, external linkage otherwise. If a declaration for an identifier within a block does
not include the extern specifier, then the identifier has no linkage and is unique to the function. If it does
include extern, and an external declaration for is active in the scope surrounding the block, then the
identifier has the same linkage as the external declaration, and refers to the same object or function; but if no
external declaration is visible, its linkage is external.

Appendix A - Reference Manual 35

38 Appendix A - Reference Manual

#define TABSIZE 100
int table[TABSIZE];

The definition

#define ABSDIFF (a, b) ((a)y>() 2 (a)—-(b) : (b)—-(a))
defines a macro to return the absolute value of the difference between its arguments. Unlike a function to do
the same thing, the arguments and returned value may have any arithmetic type or even be pointers. Also, the
arguments, which might have side effects, are evaluated twice, once for the test and once to produce the value.
Given the definition

#define tempfile(dir) #dir "%s"
the macro call tempfile (/usr/tmp) yields

"/usr/tmp" "%s"
which will subsequently be catenated into a single string. After

#define cat (x, y) X ## vy
the call cat (var, 123) yields var123. However, the call cat (cat (1, 2), 3) is undefined: the

presence of ## prevents the arguments of the outer call from being expanded. Thus it produces the t\ﬁn
string

cat (1 , 2)3 a\e CO‘

and) 3 (the catenation of the last token of the first mNche flrst t &Te second) is not a legal
token. If a second level of macro def1n1t1 @@ﬁi O

#define xcat (x, é\, ew lgl
things work m(E X oothly; xcat (t g) does produce 12 3, because the expansion of xcat

itself does not involve the ## operator.

Likewise, ABSDIFF (ABSDIFF (a,b), c) produces the expected, fully-expanded result.

A.12.4 File Inclusion
A control line of the form

include <filename>
causes the replacement of that line by the entire contents of the file filename. The characters in the name
filename must not include > or newline, and the effect is undefined if it contains any of ", ', \, or /*. The
named file is searched for in a sequence of implementation-defined places.
Similarly, a control line of the form

include "filename"
searches first in association with the original source file (a deliberately implementation-dependent phrase),
and if that search fails, then as in the first form. The effect of using ', \, or /* in the filename remains

undefined, but > is permitted.

38 Appendix A - Reference Manual

42 Appendix A - Reference Manual

type-qualifier declaration-specifiers opt

storage-class specifier: one of
auto register static extern typedef

type specifier: one of
void char short int long float double signed
unsigned struct-or-union-specifier enum-specifier typedef-name

type-qualifier: one of
const volatile

struct-or-union-specifier:
struct-or-union identifieropt { struct-declaration-list }
struct-or-union identifier

struct-or-union: one of
struct union

struct-declaration-list:
struct declaration
struct-declaration-list struct declaration

init-declarator-list: \(
init-declarator u

init-declarator-list, init-declarator

init-declarator:
declarator NO
declarator = initializer -‘(Om

truct-declaratjon; 1 e\|\|
i AR N 3
specifier-qualifier-list:

type-specifier specifier-qualifier-listopl
type-qualifier specifier-qualifier-list opt

struct-declarator-list:
struct-declarator
struct-declarator-list , struct-declarator

struct-declarator:
declarator
declaratoropt : constant-expression

enum-specifier:
enum identifieropt { enumerator-list }
enum identifier

enumerator-list:

enumerator
enumerator-list , enumerator

42 Appendix A - Reference Manual

Appendix B - Standard Library

This appendix is a summary of the library defined by the ANSI standard. The standard library is not part of
the C language proper, but an environment that supports standard C will provide the function declarations and
type and macro definitions of this library. We have omitted a few functions that are of limited utility or easily
synthesized from others; we have omitted multi-byte characters; and we have omitted discussion of locale
issues; that is, properties that depend on local language, nationality, or culture.

The functions, types and macros of the standard library are declared in standard headers:

<assert.h> <float.h> <math.h> <stdarg.h> <stdlib.h>
<ctype.h> <limits.h> <setjmp.h> <stddef.h> <string.h>
<errno.h> <locale.h> <signal.h> <stdio.h> <time.h>

A header can be accessed by

"sb.1">B.1 Input and Output: <stdio.h> The input and output functions,
types, and macros defined in <stdio.h> represent nearly one third of the
library.

A stream is a source or destination of data that may be associated with a disk or other peripheral. The library
supports text streams and binary streams, although on some systems, notably UNIX, these are identical. A text
stream is a sequence of lines; each line has zero or more characters and is terminated by '\n"'. An
environment may need to convert a text stream to or from some other representation (suc % pping '\n'
to carriage return and linefeed). A binary stream is a sequence of unprocessed \50 internal data,
with the property that if it is written, then read back on the same syst iell_l are equal.

A stream is connected to a file or device by opemﬁ m$on is en by closing the stream.

Opening a file returns a pointer to an obje vp wh1 réC r%g atever information is necessary to
control the stream. We will usg ™~ tér" and ° st am'| ch ly when there is no ambiguity.

When (ﬁte\é\@(ewtmn th@@ str, st dll’l stdout, and stderr are already open.
B.1.1 File Operations P

The following functions deal with operations on files. The type size_t is the unsigned integral type
produced by the sizeof operator.

FILE *fopen(const char *filename, const char *mode)
fopen opens the named file, and returns a stream, or NULL if the attempt fails. Legal values for
mode include:

"r" open text file for reading

"w" create text file for writing; discard previous contents if any
"a" append; open or create text file for writing at end of file
"r+" open text file for update (i.e., reading and writing)

"w+" create text file for update, discard previous contents if any

"a+" append; open or create text file for update, writing at end
Update mode permits reading and writing the same file; £ £ 1ush or a file-positioning function must
be called between a read and a write or vice versa. If the mode includes b after the initial letter, as in
"rb" or "w+b", that indicates a binary file. Filenames are limited to F ILENAME_MAX characters.
At most FOPEN_MAX files may be open at once.
FILE *freopen(const char *filename, const char *mode, FILE *stream)

Appendix B - Standard Library 1

Appendix B - Standard Library 3

¢ #, which specifies an alternate output form. For o, the first digit will become zero. For x or X,
0x or 0X will be prefixed to a non-zero result. For e, E, f, g, and G, the output will always
have a decimal point; for g and G, trailing zeros will not be removed.

® A number specifying a minimum field width. The converted argument will be printed in a field at
least this wide, and wider if necessary. If the converted argument has fewer characters than the field
width it will be padded on the left (or right, if left adjustment has been requested) to make up the field
width. The padding character is normally space, but is 0 if the zero padding flag is present.

e A period, which separates the field width from the precision.

* A number, the precision, that specifies the maximum number of characters to be printed from a string,
or the number of digits to be printed after the decimal point for e, E, or £ conversions, or the number
of significant digits for g or G conversion, or the number of digits to be printed for an integer (leading
Os will be added to make up the necessary width).

¢ A length modifier h, 1 (letter ell), or L. *"h" indicates that the corresponding argument is to be printed
asa short orunsigned short; 1" indicates that the argument is a 1ong or unsigned
long, ~L"indicates that the argument is a long double.

Width or precision or both may be specified as *, in which case the value is computed by converting the next
argument(s), which must be int.

The conversion characters and their meanings are shown in Table B.1. If the character after the % is not a
conversion character, the behavior is undefined.

Table B.1 Printf Conversions

\/Z
Character Argument type; Printed As _ ~\ UY\
d, i int; signed decimal notation. \e. vy
\ . . . O“ ~
o int; unsigned octal notation (without a Jeadi
. X unsigned int;unsigned hexgdec tTon (w1t efiding Ox or 0X), using abcdef
’ for Ox or ABCDEF f

u int; unsigpae .

A

s N erion\t% unsigned char

string are printed until a '\ 0"' is reached or until the number of
characters indicatéd by the precision have been printed.

double; decimal notation of the form [-] mmm.ddd, where the number of d's is given by the
precision. The default precision is 6; a precision of 0 suppresses the decimal point.

double; decimal notation of the form [—]m.dddddde+/—xx or [—]m.ddddddE+ /—xx, where
e,E the number of d's is specified by the precision. The default precision is 6; a precision of 0
suppresses the decimal point.

double; $e or %$E is used if the exponent is less than -4 or greater than or equal to the precision;

gr otherwise % £ is used. Trailing zeros and a trailing decimal point are not printed.
P void *; print as a pointer (implementation-dependent representation).
n int *; the number of characters written so far by this call to print £ is written into the

argument. No argument is converted.

o\°

no argument is converted; print a %

int printf (const char *format, ...)
printf (...) isequivalentto fprintf (stdout, ...).

int sprintf (char *s, const char *format, ...)
sprintf is the same as print £ except that the output is written into the string s, terminated with
"\0'. s must be big enough to hold the result. The return count does not include the '\0".

int vprintf (const char *format, va_list arg)

int vfprintf (FILE *stream, const char *format, va_list arg)

Appendix B - Standard Library 3

Appendix B - Standard Library

B.2 Character Class Tests: <ctype.h>

The header <ctype . h> declares functions for testing characters. For each function, the argument list is an
int, whose value must be EOF or representable as an unsigned char, and the return value is an int.
The functions return non-zero (true) if the argument c satisfies the condition described, and zero if not.

isalnum(c) isalpha (c) or isdigit (c) is true
isalpha (c) isupper (c) or islower (c) is true
iscntrl (c) control character

isdigit (c) decimal digit

isgraph (c) printing character except space

islower (c) lower-case letter

isprint (c) printing character including space

ispunct (c) printing character except space or letter or digit

, space, formfeed, newline, carriage return, tab,
isspace (c) vertical tab

isupper (c) upper-case letter

isxdigit (c) hexadecimal digit
In the seven-bit ASCII character set, the printing characters are 0x20 (' ') to 0x7E ('-"); the control
characters are 0 NUL to 0x1F (US), and 0x7F (DEL).

In addition, there are two functions that convert the case of letters: K

a\e O

int tolower (c) convert c to lower case 5
int toupper (c) convertc to upper case S te
ns

If c is an upper-case letter, olowe corresp % \1?%"‘%6 letter, t oupper (c) returns
st 1t retu

the corresponding upper-case

B.3 W‘F’t)n% ﬁﬁ@@ 2’9

There are two groups of string functions defined in the header <string.h>. The first have names beginning
with st r; the second have names beginning with mem. Except for memmove, the behavior is undefined if
copying takes place between overlapping objects. Comparison functions treat arguments as unsigned

char arrays.

In the following table, variables s and t are of type char *; cs and ct are of type const char *;nis
of type size_t;and cis an int converted to char.

char *strcpy(s,ct) copy string ct to string s, including '\0"'; return s.

char copy at most n characters of string ct to s; return s. Pad with "\0''s if ct
*strncpy (s, ct,n) has fewer than n characters.

char *strcat(s,ct) concatenate string ct to end of string s; return s.

char concatenate at most n characters of string ct to string s, terminate s with

*strncat (s, ct,n) '\O"'; return s.

compare string cs to string ct, return <0 if cs<ct, 0 if cs==ct, or >0 if

int strcmp(cs,ct
p(es,ct) cs>ct.

int compare at most n characters of string cs to string ct; return <0 if cs<ct, 0
strncmp (cs, ct, n) if cs==ct, or>0if cs>ct.

char *strchr(cs,c) return pointer to first occurrence of c in cs or NULL if not present.

Appendix B - Standard Library 7

Appendix B - Standard Library

DBL_MAX_EXP maximum 7 such that FLT_RADIX™! is representable
DBL_MIN 1E-37 minimum normalized double floating-point number
DBIL_MIN_EXP minimum #z such that 10" is a normalized number

15

Back to Appendix A -- Index -- Appendix C

Compiled by tmdcjsl(skidrow8123 @hotmail.com)

Back to Appendix B -- Index

Appendix B - Standard Library

15

