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Introduction to Autonomous Mobile Robots

Roland Siegwart and Illah R. Nourbakhsh

Mobile robots range from the teleoperated Sojourner on the Mars Pathfinder

mission to cleaning robots in the Paris Metro. Introduction to Autonomous

Mobile Robots offers students and other interested readers an overview of the

technology of mobility—the mechanisms that allow a mobile robot to move

through a real world environment to perform its tasks—including locomotion,

sensing, localization, and motion planning. It discusses all facets of mobile robotics,

including hardware design, wheel design, kinematics analysis, sensors and per-

ception, localization, mapping, and robot control architectures.

The design of any successful robot involves the integration of many different

disciplines, among them kinematics, signal analysis, information theory, artificial

intelligence, and probability theory. Reflecting this, the book presents the tech-

niques and technology that enable mobility in a series of interacting modules.

Each chapter covers a different aspect of mobility, as the book moves from low-

level to high-level details. The first two chapters explore low-level locomotory

ability, examining robots’ wheels and legs and the principles of kinematics. This is

followed by an in-depth view of perception, including descriptions of many “off-

the-shelf” sensors and an analysis of the interpretation of sensed data. The final

two chapters consider the higher-level challenges of localization and cognition,

discussing successful localization strategies, autonomous mapping, and navigation

competence. Bringing together all aspects of mobile robotics into one volume,

Introduction to Autonomous Mobile Robots can serve as a textbook for course-

work or a working tool for beginners in the field.

Roland Siegwart is Professor and Head of the Autonomous Systems Lab at the

Swiss Federal Institute of Technology, Lausanne. Illah R. Nourbakhsh is Associate

Professor of Robotics in the Robotics Institute, School of Computer Science, at

Carnegie Mellon University.

“This book is easy to read and well organized. The idea of providing a robot

functional architecture as an outline of the book, and then explaining each 

component in a chapter, is excellent. I think the authors have achieved their

goals, and that both the beginner and the advanced student will have a clear

idea of how a robot can be endowed with mobility.”

—Raja Chatila, LAAS-CNRS, France
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Introduction 3

Figure 1.3
Plustech developed the first application-driven walking robot. It is designed to move wood out of the
forest. The leg coordination is automated, but navigation is still done by the human operator on the
robot. (http://www.plustech.fi). © Plustech.

Figure 1.4
Airduct inspection robot featuring a pan-tilt camera with zoom and sensors for automatic inclination
control, wall following, and intersection detection (http://asl.epfl.ch). © Sedirep / EPFL.
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Introduction 11

lar talents of each form of locomotion. But designing a robot’s locomotive system properly
requires the ability to evaluate its overall motion capabilities quantitatively. Chapter 3,
“Mobile Robot Kinematics”, applies principles of kinematics to the whole robot, beginning
with the kinematic contribution of each wheel and graduating to an analysis of robot
maneuverability enabled by each mobility mechanism configuration.

The greatest single shortcoming in conventional mobile robotics is, without doubt, per-
ception: mobile robots can travel across much of earth’s man-made surfaces, but they
cannot perceive the world nearly as well as humans and other animals. Chapter 4, “Percep-
tion”, begins a discussion of this challenge by presenting a clear language for describing
the performance envelope of mobile robot sensors. With this language in hand, chapter 4
goes on to present many of the off-the-shelf sensors available to the mobile roboticist,
describing their basic principles of operation as well as their performance limitations. The
most promising sensor for the future of mobile robotics is vision, and chapter 4 includes an
overview of the theory of operation and the limitations of both charged coupled device
(CCD) and complementary metal oxide semiconductor (CMOS) sensors.

But perception is more than sensing. Perception is also the interpretation of sensed data
in meaningful ways. The second half of chapter 4 describes strategies for feature extraction
that have been most useful in mobile robotics applications, including extraction of geomet-
ric shapes from range-based sensing data, as well as landmark and whole-image analysis
using vision-based sensing.

Armed with locomotion mechanisms and outfitted with hardware and software for per-
ception, the mobile robot can move and perceive the world. The first point at which mobil-
ity and sensing must meet is localization: mobile robots often need to maintain a sense of
position. Chapter 5, “Mobile Robot Localization”, describes approaches that obviate the
need for direct localization, then delves into fundamental ingredients of successful local-
ization strategies: belief representation and map representation. Case studies demonstrate
various localization schemes, including both Markov localization and Kalman filter local-
ization. The final part of chapter 5 is devoted to a discussion of the challenges and most
promising techniques for mobile robots to autonomously map their surroundings.

Mobile robotics is so young a discipline that it lacks a standardized architecture. There
is as yet no established robot operating system. But the question of architecture is of para-
mount importance when one chooses to address the higher-level competences of a mobile
robot: how does a mobile robot navigate robustly from place to place, interpreting data,
localizing and controlling its motion all the while? For this highest level of robot compe-
tence, which we term navigation competence, there are numerous mobile robots that show-
case particular architectural strategies. Chapter 6, “Planning and Navigation”, surveys the
state of the art of robot navigation, showing that today’s various techniques are quite sim-
ilar, differing primarily in the manner in which they decompose the problem of robot con-
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Locomotion 25

The Sony Dream Robot, model SDR-4X II, is shown in figure 2.11. This current model
is the result of research begun in 1997 with the basic objective of motion entertainment and
communication entertainment (i.e., dancing and singing). This robot with thirty-eight
degrees of freedom has seven microphones for fine localization of sound, image-based
person recognition, on-board miniature stereo depth-map reconstruction, and limited
speech recognition. Given the goal of fluid and entertaining motion, Sony spent consider-
able effort designing a motion prototyping application system to enable their engineers to
script dances in a straightforward manner. Note that the SDR-4X II is relatively small,
standing at 58 cm and weighing only 6.5 kg.

The Honda humanoid project has a significant history but, again, has tackled the very
important engineering challenge of actuation. Figure 2.12 shows model P2, which is an
immediate predecessor to the most recent Asimo model (advanced step in innovative
mobility). Note from this picture that the Honda humanoid is much larger than the SDR-
4X at 120 cm tall and 52 kg. This enables practical mobility in the human world of stairs
and ledges while maintaining a nonthreatening size and posture. Perhaps the first robot to
famously demonstrate biomimetic bipedal stair climbing and descending, these Honda
humanoid series robots are being designed not for entertainment purposes but as human
aids throughout society. Honda refers, for instance, to the height of Asimo as the minimum
height which enables it to nonetheless manage operation of the human world, for instance,
control of light switches.

Figure 2.12
The humanoid robot P2 from Honda, Japan. © Honda Motor Corporation.

Specifications:

Maximum speed: 2 km/h
Autonomy: 15 min
Weight: 210 kg
Height: 1.82 m
Leg DOF: 2 x 6
Arm DOF: 2 x 7
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Locomotion 35

4 Two motorized wheels in the 
rear, 2 steered wheels in the 
front; steering has to be differ-
ent for the 2 wheels to avoid 
slipping/skidding.

Car with rear-wheel drive

Two motorized and steered 
wheels in the front, 2 free 
wheels in the rear; steering has 
to be different for the 2 wheels 
to avoid slipping/skidding.

Car with front-wheel drive

Four steered and motorized 
wheels

Four-wheel drive, four-
wheel steering Hyperion 
(CMU)

Two traction wheels (differen-
tial) in rear/front, 2 omnidirec-
tional wheels in the front/rear

Charlie (DMT-EPFL)

Four omnidirectional wheels Carnegie Mellon Uranus

Two-wheel differential drive 
with 2 additional points of con-
tact

EPFL Khepera, Hyperbot 
Chip

Four motorized and steered 
castor wheels

Nomad XR4000

Table 2.1 
Wheel configurations for rolling vehicles

# of 
wheels Arrangement Description Typical examples
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36 Chapter 2

2.3.1.4   Maneuverability
Some robots are omnidirectional, meaning that they can move at any time in any direction
along the ground plane  regardless of the orientation of the robot around its vertical
axis. This level of maneuverability requires wheels that can move in more than just one
direction, and so omnidirectional robots usually employ Swedish or spherical wheels that
are powered. A good example is Uranus, shown in figure 2.24. This robot uses four Swed-
ish wheels to rotate and translate independently and without constraints. 

6 Two motorized and steered 
wheels aligned in center, 1 
omnidirectional wheel at each 
corner

First

Two traction wheels (differen-
tial) in center, 1 omnidirec-
tional wheel at each corner

Terregator (Carnegie Mel-
lon University)

Icons for the each wheel type are as follows:

unpowered omnidirectional wheel (spherical, castor, Swedish);

motorized Swedish wheel (Stanford wheel);

unpowered standard wheel;

motorized standard wheel;

motorized and steered castor wheel;

steered standard wheel;

connected wheels.

Table 2.1 
Wheel configurations for rolling vehicles

# of 
wheels Arrangement Description Typical examples

x y,( )
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Locomotion 41

For example, when all four wheels spin “forward” or “backward” the robot as a whole
moves in a straight line forward or backward, respectively. However, when one diagonal
pair of wheels is spun in the same direction and the other diagonal pair is spun in the oppo-
site direction, the robot moves laterally.

This four-wheel arrangement of Swedish wheels is not minimal in terms of control
motors. Because there are only three degrees of freedom in the plane, one can build a three-
wheel omnidirectional robot chassis using three Swedish 90-degree wheels as shown in
table 2.1. However, existing examples such as Uranus have been designed with four wheels
owing to capacity and stability considerations.

One application for which such omnidirectional designs are particularly amenable is
mobile manipulation. In this case, it is desirable to reduce the degrees of freedom of the
manipulator arm to save arm mass by using the mobile robot chassis motion for gross
motion. As with humans, it would be ideal if the base could move omnidirectionally with-
out greatly impacting the position of the manipulator tip, and a base such as Uranus can
afford precisely such capabilities.

Omnidirectional locomotion with four castor wheels and eight motors. Another solu-
tion for omnidirectionality is to use castor wheels. This is done for the Nomad XR4000
from Nomadic Technologies (fig. 2.25), giving it excellent maneuverability. Unfortu-
nately, Nomadic has ceased   production of mobile robots.

The above three examples are drawn from table 2.1, but this is not an exhaustive list of
all wheeled locomotion techniques. Hybrid approaches that combine legged and wheeled
locomotion, or tracked and wheeled locomotion, can also offer particular advantages.
Below are two unique designs created for specialized applications.

Figure 2.24
The Carnegie Mellon Uranus robot, an omnidirectional robot with four powered-swedish 45 wheels. 
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62 Chapter 3

 (3.23)

The rolling constraints of all wheels can now be collected in a single expression:

 (3.24)

This expression bears a strong resemblance to the rolling constraint of a single wheel,
but substitutes matrices in lieu of single values, thus taking into account all wheels.  is a
constant diagonal  matrix whose entries are radii  of all standard wheels. 
denotes a matrix with projections for all wheels to their motions along their individual
wheel planes:

 (3.25)

Note that  is only a function of  and not . This is because the orientations of
steerable standard wheels vary as a function of time, whereas the orientations of fixed stan-
dard wheels are constant.  is therefore a constant matrix of projections for all fixed stan-
dard wheels. It has size ( ), with each row consisting of the three terms in the three-
matrix from equation (3.12) for each fixed standard wheel.  is a matrix of size
( ), with each row consisting of the three terms in the three-matrix from equation
(3.15) for each steerable standard wheel. 

In summary, equation (3.24) represents the constraint that all standard wheels must spin
around their horizontal axis an appropriate amount based on their motions along the wheel
plane so that rolling occurs at the ground contact point.

We use the same technique to collect the sliding constraints of all standard wheels into
a single expression with the same structure as equations (3.13) and (3.16):

 (3.26)

 (3.27)

 and  are ( ) and ( ) matrices whose rows are the three terms in the
three-matrix of equations (3.13) and (3.16) for all fixed and steerable standard wheels. Thus

ϕ t( )
ϕf t( )

ϕs t( )
=

J1 βs( )R θ( )ξI
·

J2ϕ·– 0=

J2

N N× r J1 βs( )

J1 βs( )
J1f

J1s βs( )
=

J1 βs( ) βs βf

J1 f

Nf 3×
J1s βs( )

Ns 3×

C1 βs( )R θ( )ξI
·

0=

C1 βs( )
C1 f

C1s βs( )
=

C1 f C1s Nf 3× Ns 3×
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Mobile Robot Kinematics 69

The Ackerman vehicle of figure 3.12a demonstrates another way in which a wheel may
be unable to contribute an independent constraint to the robot kinematics. This vehicle has
two steerable standard wheels. Given the instantaneous position of just one of these steer-
able wheels and the position of the fixed rear wheels, there is only a single solution for the

. The position of the second steerable wheel is absolutely constrained by the .
Therefore, it offers no independent constraints to robot motion.

Robot chassis kinematics is therefore a function of the set of independent constraints
arising from all standard wheels. The mathematical interpretation of independence is
related to the rank of a matrix. Recall that the rank of a matrix is the smallest number of
independent rows or columns. Equation (3.26) represents all sliding constraints imposed by
the wheels of the mobile robot. Therefore  is the number of independent con-
straints.

The greater the number of independent constraints, and therefore the greater the rank of
, the more constrained is the mobility of the robot. For example, consider a robot

with a single fixed standard wheel. Remember that we consider only standard wheels. This
robot may be a unicycle or it may have several Swedish wheels; however, it has exactly one
fixed standard wheel. The wheel is at a position specified by parameters  relative
to the robot’s local reference frame.  is comprised of  and . However, since
there are no steerable standard wheels  is empty and therefore  contains only

. Because there is one fixed standard wheel, this matrix has a rank of one and therefore
this robot has a single independent constrain on mobility:

 (3.37)

Figure 3.13
(a) Differential drive robot with two individually motorized wheels and a castor wheel, e.g., the Pyg-
malion robot at EPFL. (b) Tricycle with two fixed standard wheels and one steered standard wheel,
e.g. Piaggio minitransporter.

βs t( )

a) b)

ICR ICR

rank C1 βs( )

C1 βs( )

α β l, ,
C1 βs( ) C1 f C1s

C1s C1 βs( )
C1 f

C1 βs( ) C1 f α β+( )cos α β+( )sin l βsin= =
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70 Chapter 3

Now let us add an additional fixed standard wheel to create a differential-drive robot by
constraining the second wheel to be aligned with the same horizontal axis as the original
wheel. Without loss of generality, we can place point  at the midpoint between the centers
of the two wheels. Given  for wheel  and  for wheel , it
holds geometrically that . Therefore, in this
case, the matrix  has two constraints but a rank of one:

 (3.38)

Alternatively, consider the case when  is placed in the wheel plane of  but with
the same orientation, as in a bicycle with the steering locked in the forward position. We
again place point  between the two wheel centers, and orient the wheels such that they lie
on axis . This geometry implies that 
and, therefore, the matrix  retains two independent constraints and has a rank of two:

 (3.39)

In general, if  then the vehicle can, at best, only travel along a circle or
along a straight line. This configuration means that the robot has two or more independent
constraints due to fixed standard wheels that do not share the same horizontal axis of rota-
tion. Because such configurations have only a degenerate form of mobility in the plane, we
do not consider them in the remainder of this chapter. Note, however, that some degenerate
configurations such as the four-wheeled slip/skid steering system are useful in certain envi-
ronments, such as on loose soil and sand, even though they fail to satisfy sliding constraints.
Not surprisingly, the price that must be paid for such violations of the sliding constraints is
that dead reckoning based on odometry becomes less accurate and power efficiency is
reduced dramatically.

In general, a robot will have zero or more fixed standard wheels and zero or more steer-
able standard wheels. We can therefore identify the possible range of rank values for any
robot: . Consider the case . This is only possible
if there are zero independent kinematic constraints in . In this case there are neither
fixed nor steerable standard wheels attached to the robot frame: .

Consider the other extreme, . This is the maximum possible rank
since the kinematic constraints are specified along three degrees of freedom (i.e., the con-
straint matrix is three columns wide). Therefore, there cannot be more than three indepen-

P
α1 β1 l1, , w1 α2 β2 l2, , w2

l1 l2=( ) β1 β2 0= =( ) α1 π+ α2=( ), ,{ }
C1 βs( )

C1 βs( ) C1 f
α1( )cos α1( )sin 0

α1 π+( )cos α1 π+( )sin 0
= =

w2 w1

P
x1 l1 l2=( ) β1 β2 π 2⁄= =( ) α1 0=( ) α2 π=( ), , ,{ }

C1 βs( )

C1 βs( ) C1 f

π 2⁄( )cos π 2⁄( )sin l1 π 2⁄( )sin

3π 2⁄( )cos 3π 2⁄( )sin l1 π 2⁄( )sin

0 1 l1

0 1– l1

= = =

rank C1 f 1>

0 r≤ ank C1 βs( ) 3≤ rank C1 βs( ) 0=
C1 βs( )

Nf Ns 0= =
rank C1 βs( ) 3=
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Mobile Robot Kinematics 77

An alternative way to describe a holonomic robot is based on the relationship between
the differential degrees of freedom of a robot and the degrees of freedom of its workspace:
a robot is holonomic if and only if  = . Intuitively, this is because it is only
through nonholonomic constraints (imposed by steerable or fixed standard wheels) that a
robot can achieve a workspace with degrees of freedom exceeding its differential degrees
of freedom,  > . Examples include differential drive and bicycle/tricycle con-
figurations.

In mobile robotics, useful chassis generally must achieve poses in a workspace with
dimensionality 3, so in general we require  for the chassis. But the “holonomic”
abilities to maneuver around obstacles without affecting orientation and to track at a target
while following an arbitrary path are important additional considerations. For these rea-
sons, the particular form of holonomy most relevant to mobile robotics is that of

. We define this class of robot configurations as omnidirectional: an
omnidirectional robot is a holonomic robot with .

3.4.3   Path and trajectory considerations
In mobile robotics, we care not only about the robot’s ability to reach the required final con-
figurations but also about how it gets there. Consider the issue of a robot’s ability to follow
paths: in the best case, a robot should be able to trace any path through its workspace of
poses. Clearly, any omnidirectional robot can do this because it is holonomic in a three-
dimensional workspace. Unfortunately, omnidirectional robots must use unconstrained
wheels, limiting the choice of wheels to Swedish wheels, castor wheels, and spherical
wheels. These wheels have not yet been incorporated into designs allowing far larger
amounts of ground clearance and suspensions. Although powerful from a path space point
of view, they are thus much less common than fixed and steerable standard wheels, mainly
because their design and fabrication are somewhat complex and expensive. 

Additionally, nonholonomic constraints might drastically improve stability of move-
ments. Consider an omnidirectional vehicle driving at high speed on a curve with constant
diameter. During such a movement the vehicle will be exposed to a non-negligible centrip-
etal force. This lateral force pushing the vehicle out of the curve has to be counteracted by
the motor torque of the omnidirectional wheels. In case of motor or control failure, the vehi-
cle will be thrown out of the curve. However, for a car-like robot with kinematic con-
straints, the lateral forces are passively counteracted through the sliding constraints,
mitigating the demands on motor torque.

But recall an earlier example of high maneuverability using standard wheels: the bicycle
on which both wheels are steerable, often called the two-steer. This vehicle achieves a
degree of steerability of 2, resulting in a high degree of maneuverability:

. Interestingly, this configuration is not holonomic, yet has a
high degree of maneuverability in a workspace with . 

DDOF DOF

DOF DDOF

DOF 3=

DDOF DOF 3= =
DDOF 3=

δM δm= δs+ 1 2+ 3= =
DOF 3=
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Mobile Robot Kinematics 85

 denotes the angle between the  axis of the robot reference frame, and the  axis asso-
ciated with the final position  and  are the tangent and the angular velocity respectively.

On the other hand, if , where

 (3.54)

redefining the forward direction of the robot by setting , we obtain a system
described by a matrix equation of the form

 (3.55)

3.6.2.3   Remarks on the kinematic model in polar coordinates [eq. (3.53) and (3.55)]

• The coordinate transformation is not defined at ; as in such a point the deter-
minant of the Jacobian matrix of the transformation is not defined, that is unbounded.

• For  the forward direction of the robot points toward the goal, for  it is the
reverse direction.

• By properly defining the forward direction of the robot at its initial configuration, it is
always possible to have  at . However, this does not mean that  remains
in  for all time . Hence, to avoid that the robot changes direction during approaching
the goal, it is necessary to determine, if possible, the controller in such a way that 
for all , whenever . The same applies for the reverse direction (see stability
issues below).

3.6.2.4   The control law
The control signals  and  must now be designed to drive the robot from its actual con-
figuration, say , to the goal position. It is obvious that equation (3.53) presents
a discontinuity at ; thus the theorem of Brockett does not obstruct smooth stabiliz-
ability.

If we consider now the linear control law

 (3.56)

 (3.57)

θ XR XI

v ω
α I2∈

I2 π– π 2⁄– ] π 2⁄ π ],(∪,(=

v v–=

ρ·

α·

β·

αcos 0
αsin

ρ
-----------– 1

αsin
ρ

----------- 0

v

ω
=

x y 0= =

α I1∈ α I2∈

α I1∈ t 0= α
II t

α I1∈
t α 0( ) I1∈

v ω
ρ0 α0 β0, ,( )

ρ 0=

v kρρ=

ω kαα kββ+=
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Mobile Robot Kinematics 87

Figure 3.20
Resulting paths when the robot is initially on the unit circle in the x,y plane.
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4 Perception

One of the most important tasks of an autonomous system of any kind is to acquire knowl-
edge about its environment. This is done by taking measurements using various sensors and
then extracting meaningful information from those measurements. 

In this chapter we present the most common sensors used in mobile robots and then dis-
cuss strategies for extracting information from the sensors. For more detailed information
about many of the sensors used on mobile robots, refer to the comprehensive book Sensors
for Mobile Robots by H.R. Everett [15].

4.1 Sensors for Mobile Robots

There are a wide variety of sensors used in mobile robots (figure 4.1). Some sensors are
used to measure simple values like the internal temperature of a robot’s electronics or the
rotational speed of the motors. Other, more sophisticated sensors can be used to acquire
information about the robot’s environment or even to directly measure a robot’s global
position. In this chapter we focus primarily on sensors used to extract information about the
robot’s environment. Because a mobile robot moves around, it will frequently encounter
unforeseen environmental characteristics, and therefore such sensing is particularly critical.
We begin with a functional classification of sensors. Then, after presenting basic tools for
describing a sensor’s performance, we proceed to describe selected sensors in detail.

4.1.1   Sensor classification
We classify sensors using two important functional axes: proprioceptive/exteroceptive and
passive/active.

Proprioceptive sensors measure values internal to the system (robot); for example,
motor speed, wheel load, robot arm joint angles, battery voltage.

Exteroceptive sensors acquire information from the robot’s environment; for example,
distance measurements, light intensity, sound amplitude. Hence exteroceptive sensor mea-
surements are interpreted by the robot in order to extract meaningful environmental fea-
tures.
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Perception 101

Rate gyros have the same basic arrangement as shown in figure 4.4 but with a slight
modification. The gimbals are restrained by a torsional spring with additional viscous
damping. This enables the sensor to measure angular speeds instead of absolute orientation.

Optical gyroscopes. Optical gyroscopes are a relatively new innovation. Commercial use
began in the early 1980s when they were first installed in aircraft. Optical gyroscopes are
angular speed sensors that use two monochromatic light beams, or lasers, emitted from the
same source, instead of moving, mechanical parts. They work on the principle that the
speed of light remains unchanged and, therefore, geometric change can cause light to take
a varying amount of time to reach its destination. One laser beam is sent traveling clockwise
through a fiber while the other travels counterclockwise. Because the laser traveling in the
direction of rotation has a slightly shorter path, it will have a higher frequency. The differ-
ence in frequency  of the two beams is a proportional to the angular velocity  of the
cylinder. New solid-state optical gyroscopes based on the same principle are build using
microfabrication technology, thereby providing heading information with resolution and
bandwidth far beyond the needs of mobile robotic applications. Bandwidth, for instance,
can easily exceed 100 kHz while resolution can be smaller than 0.0001 degrees/hr.

4.1.5   Ground-based beacons
One elegant approach to solving the localization problem in mobile robotics is to use active
or passive beacons. Using the interaction of on-board sensors and the environmental bea-
cons, the robot can identify its position precisely. Although the general intuition is identical
to that of early human navigation beacons, such as stars, mountains, and lighthouses,
modern technology has enabled sensors to localize an outdoor robot with accuracies of
better than 5 cm within areas that are kilometers in size. 

In the following section, we describe one such beacon system, the global positioning
system (GPS), which is extremely effective for outdoor ground-based and flying robots.
Indoor beacon systems have been generally less successful for a number of reasons. The
expense of environmental modification in an indoor setting is not amortized over an
extremely large useful area, as it is, for example, in the case of the GPS. Furthermore,
indoor environments offer significant challenges not seen outdoors, including multipath
and environmental dynamics. A laser-based indoor beacon system, for example, must dis-
ambiguate the one true laser signal from possibly tens of other powerful signals that have
reflected off of walls, smooth floors, and doors. Confounding this, humans and other obsta-
cles may be constantly changing the environment, for example, occluding the one true path
from the beacon to the robot. In commercial applications, such as manufacturing plants, the
environment can be carefully controlled to ensure success. In less structured indoor set-
tings, beacons have nonetheless been used, and the problems are mitigated by careful
beacon placement and the use of passive sensing modalities.

∆f Ω
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116 Chapter 4

of view, his or her motion triggers a change in heat in the sensor’s reference frame. In the
next section, we describe an important type of motion detector based on the Doppler effect.
These sensors represent a well-known technology with decades of general applications
behind them. For fast-moving mobile robots such as autonomous highway vehicles and
unmanned flying vehicles, Doppler-based motion detectors are the obstacle detection
sensor of choice. 

4.1.7.1   Doppler effect-based sensing (radar or sound)
Anyone who has noticed the change in siren pitch that occurs when an approaching fire
engine passes by and recedes is familiar with the Doppler effect. 

A transmitter emits an electromagnetic or sound wave with a frequency . It is either
received by a receiver (figure 4.16a) or reflected from an object (figure 4.16b). The mea-
sured frequency  at the receiver is a function of the relative speed  between transmitter
and receiver according to

 (4.15)

if the transmitter is moving and

 (4.16)

if the receiver is moving.
In the case of a reflected wave (figure 4.16b) there is a factor of 2 introduced, since any

change x in relative separation affects the round-trip path length by . Furthermore, in
such situations it is generally more convenient to consider the change in frequency ,
known as the Doppler shift, as opposed to the Doppler frequency notation above.

ft

Figure 4.16
Doppler effect between two moving objects (a) or a moving and a stationary object (b).
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Camera output considerations. Although digital cameras have inherently digital output,
throughout the 1980s and early 1990s, most affordable vision modules provided analog
output signals, such as NTSC (National Television Standards Committee) and PAL (Phase
Alternating Line). These camera systems included a D/A converter which, ironically,
would be counteracted on the computer using a framegrabber, effectively an A/D converter
board situated, for example, on a computer’s bus. The D/A and A/D steps are far from
noisefree, and furthermore the color depth of the analog signal in such cameras was opti-
mized for human vision, not computer vision.

More recently, both CCD and CMOS technology vision systems provide digital signals
that can be directly utilized by the roboticist. At the most basic level, an imaging chip pro-
vides parallel digital I/O (input/output) pins that communicate discrete pixel level values.
Some vision modules make use of these direct digital signals, which must be handled sub-
ject to hard-time constraints governed by the imaging chip. To relieve the real-time
demands, researchers often place an image buffer chip between the imager’s digital output
and the computer’s digital inputs. Such chips, commonly used in webcams, capture a com-
plete image snapshot and enable non real time access to the pixels, usually in a single,
ordered pass.

At the highest level, a roboticist may choose instead to utilize a higher-level digital
transport protocol to communicate with an imager. Most common are the IEEE 1394
(Firewire) standard and the USB (and USB 2.0) standards, although some older imaging
modules also support serial (RS-232). To use any such high-level protocol, one must locate
or create driver code both for that communication layer and for the particular implementa-
tion details of the imaging chip. Take note, however, of the distinction between lossless
digital video and the standard digital video stream designed for human visual consumption.
Most digital video cameras provide digital output, but often only in compressed form. For
vision researchers, such compression must be avoided as it not only discards information
but even introduces image detail that does not actually exist, such as MPEG (Moving Pic-
ture Experts Group) discretization boundaries.

4.1.8.2   Visual ranging sensors
Range sensing is extremely important in mobile robotics as it is a basic input for successful
obstacle avoidance. As we have seen earlier in this chapter, a number of sensors are popular
in robotics explicitly for their ability to recover depth estimates: ultrasonic, laser
rangefinder, optical rangefinder, and so on. It is natural to attempt to implement ranging
functionality using vision chips as well.

However, a fundamental problem with visual images makes rangefinding relatively dif-
ficult. Any vision chip collapses the 3D world into a 2D image plane, thereby losing depth
information. If one can make strong assumptions regarding the size of objects in the world,
or their particular color and reflectance, then one can directly interpret the appearance of
the 2D image to recover depth. But such assumptions are rarely possible in real-world

Preview from Notesale.co.uk

Page 137 of 336



132 Chapter 4

In order to carry out the calibration step of step 2 above, we must find values for twelve
unknowns, requiring twelve equations. This means that calibration requires, for a given
scene, four conjugate points. 

The above example supposes that regular translation and rotation are all that are required
to effect sufficient calibration for stereo depth recovery using two cameras. In fact, single-
camera calibration is itself an active area of research, particularly when the goal includes
any 3D recovery aspect. When researchers intend to use even a single camera with high pre-
cision in 3D, internal errors relating to the exact placement of the imaging chip relative to
the lens optical axis, as well as aberrations in the lens system itself, must be calibrated
against. Such single-camera calibration involves finding solutions for the values for the
exact offset of the imaging chip relative to the optical axis, both in translation and angle,
and finding the relationship between distance along the imaging chip surface and external
viewed surfaces. Furthermore, even without optical aberration in play, the lens is an inher-
ently radial instrument, and so the image projected upon a flat imaging surface is radially
distorted (i.e., parallel lines in the viewed world converge on the imaging chip). 

A commonly practiced technique for such single-camera calibration is based upon
acquiring multiple views of an easily analyzed planar pattern, such as a grid of black
squares on a white background. The corners of such squares can easily be extracted, and
using an interactive refinement algorithm the intrinsic calibration parameters of a camera
can be extracted. Because modern imaging systems are capable of spatial accuracy greatly
exceeding the pixel size, the payoff of such refined calibration can be significant. For fur-
ther discussion of calibration and to download and use a standard calibration program, see
[158].

Assuming that the calibration step is complete, we can now formalize the range recovery
problem. To begin with, we do not have the position of P available, and therefore

 and  are unknowns. Instead, by virtue of the two cameras we have
pixels on the image planes of each camera,  and . Given the focal
length  of the cameras we can relate the position of  to the left camera image as follows:

 and  (4.31)

Let us concentrate first on recovery of the values  and . From equations (4.30) and
(4.31) we can compute these values from any two of the following equations:

 (4.32)
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Figure 4.24
Extracting depth information from a stereo image. (a1 and a2) Left and right image. (b1 and b2) Ver-
tical edge filtered left and right image: filter = [1 2 4 -2 -10 -2 4 2 1]. (c) Confidence image:
bright = high confidence (good texture); dark = low confidence (no texture). (d) Depth image (dispar-
ity): bright = close; dark = far.
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 (4.41)

from which we can abbreviate

 ;    (4.42)

and

 ;   ;    (4.43)

so that we obtain

 (4.44)

The derivative  represents how quickly the intensity changes with time while the
derivatives  and  represent the spatial rates of intensity change (how quickly intensity
changes across the image). Altogether, equation (4.44) is known as the optical flow con-
straint equation and the three derivatives can be estimated for each pixel given successive
images.

We need to calculate both u and v for each pixel, but the optical flow constraint equation
only provides one equation per pixel, and so this is insufficient. The ambiguity is intuitively
clear when one considers that a number of equal-intensity pixels can be inherently ambig-
uous – it may be unclear which pixel is the resulting location for an equal-intensity origi-
nating pixel in the prior image.

The solution to this ambiguity requires an additional constraint. We assume that in gen-
eral the motion of adjacent pixels will be similar, and that therefore the overall optical flow
of all pixels will be smooth. This constraint is interesting in that we know it will be violated
to some degree, but we enforce the constraint nonetheless in order to make the optical flow
computation tractable. Specifically, this constraint will be violated precisely when different
objects in the scene are moving in different directions with respect to the vision system. Of
course, such situations will tend to include edges, and so this may introduce a useful visual
cue.

Because we know that this smoothness constraint will be somewhat incorrect, we can
mathematically define the degree to which we violate this constraint by evaluating the for-
mula
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In the following two sections, we present specific feature extraction techniques based on
the two most popular sensing modalities of mobile robotics: range sensing and visual
appearance-based sensing.

4.3.1   Feature extraction based on range data (laser, ultrasonic, vision-based ranging)
Most of today’s features extracted from ranging sensors are geometric primitives such as
line segments or circles. The main reason for this is that for most other geometric primitives
the parametric description of the features becomes too complex and no closed-form solu-
tion exists. Here we describe line extraction in detail, demonstrating how the uncertainty
models presented above can be applied to the problem of combining multiple sensor mea-
surements. Afterward, we briefly present another very successful feature of indoor mobile
robots, the corner feature, and demonstrate how these features can be combined in a single
representation.

4.3.1.1   Line extraction
Geometric feature extraction is usually the process of comparing and matching measured
sensor data against a predefined description, or template, of the expect feature. Usually, the
system is overdetermined in that the number of sensor measurements exceeds the number
of feature parameters to be estimated. Since the sensor measurements all have some error,
there is no perfectly consistent solution and, instead, the problem is one of optimization.
One can, for example, extract the feature that minimizes the discrepancy with all sensor
measurements used (e.g,. least-squares estimation).

In this section we present an optimization-based solution to the problem of extracting a
line feature from a set of uncertain sensor measurements. For greater detail than is pre-
sented below, refer to [14, pp. 15 and 221].

Probabilistic line extraction from uncertain range sensor data. Our goal is to extract a
line feature based on a set of sensor measurements as shown in figure 4.36. There is uncer-
tainty associated with each of the noisy range sensor measurements, and so there is no
single line that passes through the set. Instead, we wish to select the best possible match,
given some optimization criterion.

More formally, suppose  ranging measurement points in polar coordinates
 are produced by the robot’s sensors. We know that there is uncertainty asso-

ciated with each measurement, and so we can model each measurement using two random
variables . In this analysis we assume that uncertainty with respect to the
actual value of  and  is independent. Based on equation (4.56) we can state this for-
mally:

 =  (4.62)

n
xi ρi θi,( )=

Xi Pi Qi,( )=
P Q

E Pi Pj⋅[ ] E Pi[ ]E Pj[ ] ∀ i j, 1 … n, ,=
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This section presents some appearance-based feature extraction techniques that are rel-
evant to mobile robotics along these lines. Two key requirements must be met for a vision-
based feature extraction technique to have mobile robotic relevance. First, the method must
operate in real time. Mobile robots move through their environment, and so the processing
simply cannot be an off-line operation. Second, the method must be robust to the real-world
conditions outside of a laboratory. This means that carefully controlled illumination
assumptions and carefully painted objects are unacceptable requirements.

Throughout the following descriptions, keep in mind that vision-based interpretation is
primarily about the challenge of reducing information. A sonar unit produces perhaps fifty
bits of information per second. By contrast, a CCD camera can output 240 million bits per
second! The sonar produces a tiny amount of information from which we hope to draw
broader conclusions. But the CCD chip produces too much information, and this overabun-
dance of information mixes together relevant and irrelevant information haphazardly. For
example, we may intend to measure the color of a landmark. The CCD camera does not
simply report its color, but also measures the general illumination of the environment, the

Figure 4.41
Scheme and tools in computer vision. See also [18].
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In Shakey’s environment, edges corresponded to nonfloor objects, and so the floor plane
extraction algorithm simply consisted of the application of an edge detector to the mono-
chrome camera image. The lowest edges detected in an image corresponded to the closest
obstacles, and the direction of straight-line edges extracted from the image provided clues
regarding not only the position but also the orientation of walls and polygonal obstacles.

Although this very simple appearance-based obstacle detection system was successful,
it should be noted that special care had to be taken at the time to create indirect lighting in
the laboratory such that shadows were not cast, as the system would falsely interpret the
edges of shadows as obstacles.

Adaptive floor plane extraction. Floor plane extraction has succeeded not only in artifi-
cial environments but in real-world mobile robot demonstrations in which a robot avoids
both static obstacles such as walls and dynamic obstacles such as passersby, based on seg-
mentation of the floor plane at a rate of several hertz. Such floor plane extraction algorithms
tend to use edge detection and color detection jointly while making certain assumptions
regarding the floor, for example, the floor’s maximum texture or approximate color range
[78].

Each system based on fixed assumptions regarding the floor’s appearance is limited to
only those environments satisfying its constraints. A more recent approach is that of adap-
tive floor plane extraction, whereby the parameters defining the expected appearance of the
floor are allowed to vary over time. In the simplest instance, one can assume that the pixels
at the bottom of the image (i.e., closest to the robot) are part of the floor and contain no
obstacles. Then, statistics computed on these “floor sample” pixels can be used to classify
the remaining image pixels.

The key challenge in adaptive systems is the choice of what statistics to compute using
the “floor sample” pixels. The most popular solution is to construct one or more histograms
based on the floor sample pixel values. Under “edge detection” above, we found histograms
to be useful in determining the best cut point in edge detection thresholding algorithms.
Histograms are also useful as discrete representations of distributions. Unlike the Gaussian
representation, a histogram can capture multi-modal distributions. Histograms can also be
updated very quickly and use very little processor memory. An intensity histogram of the
“floor sample” subregion  of image  is constructed as follows:

• As preprocessing, smooth , using a Gaussian smoothing operator.

• Initialize a histogram array H with n intensity values:  for .

• For every pixel  in  increment the histogram: += 1.

The histogram array  serves as a characterization of the appearance of the floor plane.
Often, several 1D histograms are constructed, corresponding to intensity, hue, and satura-
tion, for example. Classification of each pixel in  as floor plane or obstacle is performed
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sequences generated using the above algorithm. The top string should match Place 1, but
note that there are deletions and insertions between the two strings.

The technique used in the fingerprinting approach for string differencing is known as a
minimum energy algorithm. Taken from the stereo vision community, this optimization-
based algorithm will find the minimum energy required to “transform” one sequence into
another sequence. The result is a distance metric that is relatively insensitive to the addition
or subtraction of individual local features while still able to robustly identify the correct
matching string in a variety of circumstances.

It should be clear from the previous two sections that whole-image feature extraction is
straightforward with vision-based perception and can be applicable to mobile robot local-
ization. But it is spatially localized features that continue to play a dominant role because
of their immediate application to the more urgent need for real-time obstacle avoidance.
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• Unequal floor contact (slipping, nonplanar surface, etc.).

Some of the errors might be deterministic (systematic), thus they can be eliminated by
proper calibration of the system. However, there are still a number of nondeterministic
(random) errors which remain, leading to uncertainties in position estimation over time.
From a geometric point of view one can classify the errors into three types:

1. Range error: integrated path length (distance) of the robot’s movement
→ sum of the wheel movements

2. Turn error: similar to range error, but for turns
→ difference of the wheel motions

3. Drift error: difference in the error of the wheels leads to an error in the robot’s angular
orientation

Over long periods of time, turn and drift errors far outweigh range errors, since their con-
tribution to the overall position error is nonlinear. Consider a robot whose position is ini-
tially perfectly well-known, moving forward in a straight line along the -axis. The error
in the -position introduced by a move of  meters will have a component of ,
which can be quite large as the angular error  grows. Over time, as a mobile robot moves
about the environment, the rotational error between its internal reference frame and its orig-
inal reference frame grows quickly. As the robot moves away from the origin of these ref-
erence frames, the resulting linear error in position grows quite large. It is instructive to
establish an error model for odometric accuracy and see how the errors propagate over
time.

5.2.4   An error model for odometric position estimation
Generally the pose (position) of a robot is represented by the vector

 (5.1)

For a differential-drive robot the position can be estimated starting from a known posi-
tion by integrating the movement (summing the incremental travel distances). For a dis-
crete system with a fixed sampling interval  the incremental travel distances

 are

 (5.2)
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This technique is based on a belief that there exists a procedural solution to the particular
navigation problem at hand. For example, in figure 5.6, the behavioralist approach to nav-
igating from room A to room B might be to design a left-wall following behavior and a
detector for room B that is triggered by some unique queue in room B, such as the color of
the carpet. Then the robot can reach room B by engaging the left-wall follower with the
room B detector as the termination condition for the program.

The architecture of this solution to a specific navigation problem is shown in figure 5.7.
The key advantage of this method is that, when possible, it may be implemented very
quickly for a single environment with a small number of goal positions. It suffers from
some disadvantages, however. First, the method does not directly scale to other environ-
ments or to larger environments. Often, the navigation code is location-specific, and the
same degree of coding and debugging is required to move the robot to a new environment. 

Second, the underlying procedures, such as left-wall-follow, must be carefully designed
to produce the desired behavior. This task may be time-consuming and is heavily dependent
on the specific robot hardware and environmental characteristics. 

Third, a behavior-based system may have multiple active behaviors at any one time.
Even when individual behaviors are tuned to optimize performance, this fusion and rapid
switching between multiple behaviors can negate that fine-tuning. Often, the addition of
each new incremental behavior forces the robot designer to retune all of the existing behav-
iors again to ensure that the new interactions with the freshly introduced behavior are all
stable.

Figure 5.6
A sample environment.
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• The map, if created by the robot, can be used by humans as well, achieving two uses.

The map-based approach will require more up-front development effort to create a nav-
igating mobile robot. The hope is that the development effort results in an architecture that
can successfully map and navigate a variety of environments, thereby amortizing the up-
front design cost over time.

Of course the key risk of the map-based approach is that an internal representation,
rather than the real world itself, is being constructed and trusted by the robot. If that model
diverges from reality (i.e., if the map is wrong), then the robot’s behavior may be undesir-
able, even if the raw sensor values of the robot are only transiently incorrect.

In the remainder of this chapter, we focus on a discussion of map-based approaches and,
specifically, the localization component of these techniques. These approaches are partic-
ularly appropriate for study given their significant recent successes in enabling mobile
robots to navigate a variety of environments, from academic research buildings, to factory
floors, and to museums around the world.

5.4 Belief Representation

The fundamental issue that differentiates various map-based localization systems is the
issue of representation. There are two specific concepts that the robot must represent, and
each has its own unique possible solutions. The robot must have a representation (a model)
of the environment, or a map. What aspects of the environment are contained in this map?
At what level of fidelity does the map represent the environment? These are the design
questions for map representation.

The robot must also have a representation of its belief regarding its position on the map.
Does the robot identify a single unique position as its current position, or does it describe
its position in terms of a set of possible positions? If multiple possible positions are
expressed in a single belief, how are those multiple positions ranked, if at all? These are the
design questions for belief representation.

Decisions along these two design axes can result in varying levels of architectural com-
plexity, computational complexity, and overall localization accuracy. We begin by discuss-
ing belief representation. The first major branch in a taxonomy of belief representation
systems differentiates between single-hypothesis and multiple-hypothesis belief systems.
The former covers solutions in which the robot postulates its unique position, whereas the
latter enables a mobile robot to describe the degree to which it is uncertain about its posi-
tion. A sampling of different belief and map representations is shown in figure 5.9. 

5.4.1   Single-hypothesis belief
The single-hypothesis belief representation is the most direct possible postulation of mobile
robot position. Given some environmental map, the robot’s belief about position is
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Figure 5.9
Belief representation regarding the robot position (1D) in continuous and discretized (tessellated)
maps. (a) Continuous map with single-hypothesis belief, e.g., single Gaussian centered at a single
continuous value. (b) Continuous map with multiple-hypothesis belief, e.g;. multiple Gaussians cen-
tered at multiple continuous values. (c) Discretized (decomposed) grid map with probability values
for all possible robot positions, e.g.; Markov approach. (d) Discretized topological map with proba-
bility value for all possible nodes (topological robot positions), e.g.; Markov approach.
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One excellent example involves line extraction. Many indoor mobile robots rely upon
laser rangefinding devices to recover distance readings to nearby objects. Such robots can
automatically extract best-fit lines from the dense range data provided by thousands of
points of laser strikes. Given such a line extraction sensor, an appropriate continuous map-
ping approach is to populate the map with a set of infinite lines. The continuous nature of
the map guarantees that lines can be positioned at arbitrary positions in the plane and at
arbitrary angles. The abstraction of real environmental objects such as walls and intersec-
tions captures only the information in the map representation that matches the type of infor-
mation recovered by the mobile robot’s rangefinding sensor.

Figure 5.13 shows a map of an indoor environment at EPFL using a continuous line rep-
resentation. Note that the only environmental features captured by the map are straight
lines, such as those found at corners and along walls. This represents not only a sampling
of the real world of richer features but also a simplification, for an actual wall may have
texture and relief that is not captured by the mapped line.

The impact of continuous map representations on position representation is primarily
positive. In the case of single-hypothesis position representation, that position may be spec-
ified as any continuous-valued point in the coordinate space, and therefore extremely high
accuracy is possible. In the case of multiple-hypothesis position representation, the contin-
uous map enables two types of multiple position representation.

In one case, the possible robot position may be depicted as a geometric shape in the
hyperplane, such that the robot is known to be within the bounds of that shape. This is
shown in figure 5.29, in which the position of the robot is depicted by an oval bounding
area.

Figure 5.13
Example of a continuous-valued line representation of EPFL. (a) Real map. (b) Representation with
a set of infinite lines.
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rooms. Note that nodes capture geometric space, and arcs in this representation simply rep-
resent connectivity. 

Another example of topological representation is the work of Simhon and Dudek [134],
in which the goal is to create a mobile robot that can capture the most interesting aspects of
an area for human consumption. The nodes in their representation are visually striking
locales rather than route intersections.

In order to navigate using a topological map robustly, a robot must satisfy two con-
straints. First, it must have a means for detecting its current position in terms of the nodes
of the topological graph. Second, it must have a means for traveling between nodes using
robot motion. The node sizes and particular dimensions must be optimized to match the
sensory discrimination of the mobile robot hardware. This ability to “tune” the representa-
tion to the robot’s particular sensors can be an important advantage of the topological
approach. However, as the map representation drifts further away from true geometry, the
expressiveness of the representation for accurately and precisely describing a robot position
is lost. Therein lies the compromise between the discrete cell-based map representations
and the topological representations. Interestingly, the continuous map representation has

Figure 5.18
A topological representation of an indoor office area.
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5.6.2.1   Introduction: applying probability theory to robot localization
Given a discrete representation of robot positions, in order to express a belief state we wish
to assign to each possible robot position a probability that the robot is indeed at that posi-
tion. From probability theory we use the term  to denote the probability that  is true.
This is also called the prior probability of  because it measures the probability that  is
true independent of any additional knowledge we may have. For example we can use

 to denote the prior probability that the robot r is at position  at time .
In practice, we wish to compute the probability of each individual robot position given

the encoder and sensor evidence the robot has collected. In probability theory, we use the
term  to denote the conditional probability of  given that we know . For exam-
ple, we use  to denote the probability that the robot is at position  given that
the robot’s sensor inputs . 

The question is, how can a term such as  be simplified to its constituent parts
so that it can be computed? The answer lies in the product rule, which states

 (5.18)

Equation (5.18) is intuitively straightforward, as the probability of both  and  being
true is being related to  being true and the other being conditionally true. But you should
be able to convince yourself that the alternate equation is equally correct:

 (5.19)

Using equations (5.18) and (5.19) together, we can derive the Bayes formula for com-
puting :

 (5.20)

We use the Bayes rule to compute the robot’s new belief state as a function of its sensory
inputs and its former belief state. But to do this properly, we must recall the basic goal of
the Markov localization approach: a discrete set of possible robot positions  are repre-
sented. The belief state of the robot must assign a probability  for each location 
in .

The  function described in equation (5.17) expresses a mapping from a belief state
and sensor input to a refined belief state. To do this, we must update the probability asso-
ciated with each position  in , and we can do this by directly applying the Bayes formula
to every such . In denoting this, we will stop representing the temporal index  for sim-
plicity and will further use  to mean :
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each position. An example of just such a procedure is the sensory uncertainty field of
Latombe [141], in which the robot must find a trajectory that reaches its goal while maxi-
mizing its localization confidence on-line.

5.6.2.3   Case study 2: Markov localization using a grid map
The major weakness of a purely topological decomposition of the environment is the reso-
lution limitation imposed by such a granular representation. The position of the robot is
usually limited to the resolution of a single node in such cases, and this may be undesirable
for certain applications.

In this case study, we examine the work of Burgard and colleagues [49, 50] in which far
more precise navigation is made possible using a grid-based representation while still
employing the Markov localization technique.

The robot used by this research, Rhino, is an RWI B24 robot with twenty-four sonars
and two Sick laser rangefinders. Clearly, at the sensory level this robot accumulates greater
and more accurate range data than is possible with the handful of sonar sensors mounted on
Dervish. In order to make maximal use of these fine-grained sensory data, Rhino uses a 2D
geometric environmental representation of free and occupied space. This metric map is tes-
sellated regularly into a fixed decomposition grid with each cell occupying 4 to 64 cm in
various instantiations. 

Like Dervish, Rhino uses multiple-hypothesis belief representation. In line with the far
improved resolution of the environmental representation, the belief state representation of
Rhino consists of a  3D array representing the probability of  possible
robot positions (see figure 5.23). The resolution of the array is . Note
that unlike Dervish, which assumes its orientation is approximate and known, Rhino
explicitly represents fine-grained alternative orientations, and so its belief state formally
represents three degrees of freedom. As we have stated before, the resolution of the belief
state representation must match the environmental representation in order for the overall
system to function well.

Whereas Dervish made use of only perceptual events, ignoring encoder inputs and there-
fore metric distance altogether, Rhino uses the complete Markov probabilistic localization
approach summarized in section 5.6.2.1, including both an explicit action update phase and
a perception update phase at every cycle.

The discrete Markov chain version of action update is performed because of the tessel-
lated representation of position. Given encoder measurements o at time , each updated
position probability in the belief state is expressed as a sum over previous possible positions
and the motion model:

 (5.26)
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Note that equation (5.26) is simply a discrete version of equation (5.22). The specific
motion model used by Rhino represents the result of motion as a Gaussian that is bounded
(i.e., the tails of the distribution are finite). Rhino’s kinematic configuration is a three-
wheel synchro-drive rather than a differential-drive robot. Nevertheless, the error ellipses
depicted in figures 5.4 and 5.5 are similar to the Gaussian bounds that result from Rhino’s
motion model.

The perception model follows the Bayes formula precisely, as in equation (5.21). Given
a range perception  the probability of the robot being at each location  is updated as fol-
lows:

 (5.27)

Note that a denominator is used by Rhino, although the denominator is constant for vary-
ing values of . This denominator acts as a normalizer to ensure that the probability mea-
sures in the belief state continue to sum to 1. 

The critical challenge is, of course, the calculation of . In the case of Dervish, the
number of possible values for  and  were so small that a simple table could suffice. How-
ever, with the fine-grained metric representation of Rhino, the number of possible sensor
readings and environmental geometric contexts is extremely large. Thus, Rhino computes

Figure 5.23
The belief state representation 3D array used by Rhino (courtesy of W. Burgard and S. Thrun). 
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 (5.32)

 (5.33)

If we take as the weight 

 (5.34)

then the value of  in terms of two measurements can be defined as follows:

 (5.35)

   ;    (5.36)

Note that from equation (5.36) we can see that the resulting variance  is less than all
the variances  of the individual measurements. Thus the uncertainty of the position esti-
mate has been decreased by combining the two measurements. The solid probability den-
sity curve represents the result of the Kalman filter in figure 5.26, depicting this result. Even
poor measurements, such as are provided by the sonar, will only increase the precision of
an estimate. This is a result that we expect based on information theory.

Equation (5.35) can be rewritten as

 (5.37)
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The optimal estimate at time  is given by the last estimate at  and the estimate of
the robot motion including the estimated movement errors. 

By extending the above equations to the vector case and allowing time-varying param-
eters in the system and a description of noise, we can derive the Kalman filter localization
algorithm.

5.6.3.2   Application to mobile robots: Kalman filter localization
The Kalman filter is an optimal and efficient sensor fusion technique. Application of the
Kalman filter to localization requires posing the robot localization problem as a sensor
fusion problem. Recall that the basic probabilistic update of robot belief state can be seg-
mented into two phases, perception update and action update, as specified by equations
(5.21) and (5.22). 

The key difference between the Kalman filter approach and our earlier Markov localiza-
tion approach lies in the perception update process. In Markov localization, the entire per-
ception, that is, the robot’s set of instantaneous sensor measurements, is used to update each
possible robot position in the belief state individually using the Bayes formula. In some
cases, the perception is abstract, having been produced by a feature extraction mechanism,
as in Dervish. In other cases, as with Rhino, the perception consists of raw sensor readings.

By contrast, perception update using a Kalman filter is a multistep process. The robot’s
total sensory input is treated not as a monolithic whole but as a set of extracted features that

Figure 5.27
Propagation of probability density of a moving robot [106].
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 (5.49)

The predicted state estimate  is used to compute the measurement Jacobian
 for each prediction. As you will see in the example below, the function  is mainly a

coordinate transformation between the world frame and the sensor frame.

4. Matching. At this point we have a set of actual, single observations, which are features
in sensor space, and we also have a set of predicted features, also positioned in sensor space.
The matching step has the purpose of identifying all of the single observations that match
specific predicted features well enough to be used during the estimation process. In other
words, we will, for a subset of the observations and a subset of the predicted features, find
pairings that intuitively say “this observation is the robot’s measurement of this predicted
feature based on the map.”

Formally, the goal of the matching procedure is to produce an assignment from obser-
vations  to the targets  (stored in the map). For each measurement prediction for
which a corresponding observation is found we calculate the innovation . Inno-
vation is a measure of the difference between the predicted and observed measurements:

 (5.50)

The innovation covariance  can be found by applying the error propagation
law [section 4.2.2, equation (4.60)]:

 (5.51)

where  represents the covariance (noise) of the measurement .
To determine the validity of the correspondence between measurement prediction and

observation, a validation gate has to be specified. A possible definition of the validation
gate is the Mahalanobis distance:

 (5.52)

However, dependent on the application, the sensors, and the environment models, more
sophisticated validation gates might be employed.

The validation equation is used to test observation  for membership in the val-
idation gate for each predicted measurement. When a single observation falls in the valida-
tion gate, we get a successful match. If one observation falls in multiple validation gates,
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the best matching candidate is selected or multiple hypotheses are tracked. Observations
that do not fall in the validation gate are simply ignored for localization. Such observations
could have resulted from objects not in the map, such as new objects (e.g., someone places
a large box in the hallway) or transient objects (e.g., humans standing next to the robot may
form a line feature). One approach is to take advantage of such unmatched observations to
populate the robot’s map.

5. Estimation: applying the Kalman filter. Next we compute the best estimate
 of the robot’s position based on the position prediction and all the observa-

tions at time . To do this position update, we first stack the validated observations
 into a single vector to form  and designate the composite innovation
. Then we stack the measurement Jacobians  for each validated measurement

together to form the composite Jacobian  and the measurement error (noise) vector
. We can then compute the composite innovation covari-

ance  according to equation (5.51) and by utilizing the well-known result
[3] that the Kalman gain can be written as

 (5.53)

we can update the robot’s position estimate

 (5.54)

with the associated variance

 (5.55)

For the 1D case and with  we can show that this formula corre-
sponds to the 1D case derived earlier

Equation (5.53) is simplified to

 (5.56)

corresponding to equation (5.45), and equation (5.54) simplifies to
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that the robot will always be able to localize successfully. This work also led to a real-world
demonstration of landmark-based localization. Standard sheets of paper were placed on the
ceiling of the Robotics Laboratory at Stanford University, each with a unique checkerboard
pattern. A Nomadics 200 mobile robot was fitted with a monochrome CCD camera aimed
vertically up at the ceiling. By recognizing the paper landmarks, which were placed approx-
imately 2 m apart, the robot was able to localize to within several centimeters, then move,
using dead reckoning, to another landmark zone.

The primary disadvantage of landmark-based navigation is that in general it requires sig-
nificant environmental modification. Landmarks are local, and therefore a large number are
usually required to cover a large factory area or research laboratory. For example, the
Robotics Laboratory at Stanford made use of approximately thirty discrete landmarks, all
affixed individually to the ceiling.

5.7.2   Globally unique localization
The landmark-based navigation approach makes a strong general assumption: when the
landmark is in the robot’s field of view, localization is essentially perfect. One way to reach
the Holy Grail of mobile robotic localization is to effectively enable such an assumption to
be valid no matter where the robot is located. It would be revolutionary if a look at the
robot’s sensors immediately identified its particular location, uniquely and repeatedly.

Such a strategy for localization is surely aggressive, but the question of whether it can
be done is primarily a question of sensor technology and sensing software. Clearly, such a
localization system would need to use a sensor that collects a very large amount of infor-
mation. Since vision does indeed collect far more information than previous sensors, it has
been used as the sensor of choice in research toward globally unique localization.

Figure 4.49 depicts the image taken by a catadioptric camera system. If humans were
able to look at an individual such picture and identify the robot’s location in a well-known
environment, then one could argue that the information for globally unique localization
does exist within the picture; it must simply be teased out.

One such approach has been attempted by several researchers and involves constructing
one or more image histograms to represent the information content of an image stably (see
e.g., figure 4.50 and section 4.3.2.2). A robot using such an image-histogramming system
has been shown to uniquely identify individual rooms in an office building as well as indi-
vidual sidewalks in an outdoor environment. However, such a system is highly sensitive to
external illumination and provides only a level of localization resolution equal to the visual
footprint of the camera optics.

The angular histogram depicted in figure 4.39 of the previous chapter is another example
in which the robot’s sensor values are transformed into an identifier of location. However,
due to the limited information content of sonar ranging strikes, it is likely that two places
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5.8 Autonomous Map Building

All of the localization strategies we have discussed require human effort to install the robot
into a space. Artificial environmental modifications may be necessary. Even if this not be
case, a map of the environment must be created for the robot. But a robot that localizes suc-
cessfully has the right sensors for detecting the environment, and so the robot ought to build
its own map. This ambition goes to the heart of autonomous mobile robotics. In prose, we
can express our eventual goal as follows:

Starting from an arbitrary initial point, a mobile robot should be able to autonomously
explore the environment with its on-board sensors, gain knowledge about it, interpret the
scene, build an appropriate map, and localize itself relative to this map.

Accomplishing this goal robustly is probably years away, but an important subgoal is
the invention of techniques for autonomous creation and modification of an environmental
map. Of course a mobile robot’s sensors have only a limited range, and so it must physically
explore its environment to build such a map. So, the robot must not only create a map but
it must do so while moving and localizing to explore the environment. In the robotics com-
munity, this is often called the simultaneous localization and mapping (SLAM) problem,
arguably the most difficult problem specific to mobile robot systems.

The reason that SLAM is difficult is born precisely from the interaction between the
robot’s position updates as it localizes and its mapping actions. If a mobile robot updates
its position based on an observation of an imprecisely known feature, the resulting position
estimate becomes correlated with the feature location estimate. Similarly, the map becomes
correlated with the position estimate if an observation taken from an imprecisely known
position is used to update or add a feature to the map. The general problem of map-building
is thus an example of the chicken-and-egg problem. For localization the robot needs to
know where the features are, whereas for map-building the robot needs to know where it is
on the map. 

The only path to a complete and optimal solution to this joint problem is to consider all
the correlations between position estimation and feature location estimation. Such cross-
correlated maps are called stochastic maps, and we begin with a discussion of the theory
behind this approach in the following section [55].

Unfortunately, implementing such an optimal solution is computationally prohibitive. In
response a number of researchers have offered other solutions that have functioned well in
limited circumstances. Section 5.8.2 characterizes these alternative partial solutions.

5.8.1   The stochastic map technique
Figure 5.38 shows a general schematic incorporating map building and maintenance into
the standard localization loop depicted by figure 5.28 during the discussion of Kalman filter
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features and avoids a great deal of irrelevant detail. When the robot arrives at a topological
node that could be the same as a previously visited and mapped node (e.g., similar distin-
guishing features), then the robot postulates that it has indeed returned to the same node.
To check this hypothesis, the robot explicitly plans and moves to adjacent nodes to see if
its perceptual readings are consistent with the cycle hypothesis.

With the recent popularity of metric maps, such as fixed decomposition grid represen-
tations, the cycle detection strategy is not as straightforward. Two important features are
found in most autonomous mapping systems that claim to solve the cycle detection prob-
lem. First, as with many recent systems, these mobile robots tend to accumulate recent per-
ceptual history to create small-scale local submaps [51, 74, 157]. Each submap is treated as
a single sensor during the robot’s position update. The advantage of this approach is two-
fold. Because odometry is relatively accurate over small distances, the relative registration
of features and raw sensor strikes in a local submap will be quite accurate. In addition to
this, the robot will have created a virtual sensor system with a significantly larger horizon
than its actual sensor system’s range. In a sense, this strategy at the very least defers the
problem of very large cyclic environments by increasing the map scale that can be handled
well by the robot.

The second recent technique for dealing with cycle environments is in fact a return to
the topological representation. Some recent automatic mapping systems will attempt to
identify cycles by associating a topology with the set of metric submaps, explicitly identi-
fying the loops first at the topological level. In the case of [51], for example, the topological
level loop is identified by a human who pushes a button at a known landmark position. In
the case of [74], the topological level loop is determined by performing correspondence
tests between submaps, postulating that two submaps represent the same place in the envi-
ronment when the correspondence is good.

One could certainly imagine other augmentations based on known topological methods.
For example, the globally unique localization methods described in section 5.7 could be
used to identify topological correctness. It is notable that the automatic mapping research
of the present has, in many ways, returned to the basic topological correctness question that
was at the heart of some of the earliest automatic mapping research in mobile robotics more
than a decade ago. Of course, unlike that early work, today’s automatic mapping results
boast correct cycle detection combined with high-fidelity geometric maps of the environ-
ment.

5.8.2.2   Dynamic environments
A second challenge extends not just to existing autonomous mapping solutions but to the
basic formulation of the stochastic map approach. All of these strategies tend to assume that
the environment is either unchanging or changes in ways that are virtually insignificant.
Such assumptions are certainly valid with respect to some environments, such as, for exam-
ple, the computer science department of a university at 3 AM. However, in a great many
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6.2 Competences for Navigation: Planning and Reacting

In the artificial intelligence community planning and reacting are often viewed as contrary
approaches or even opposites. In fact, when applied to physical systems such as mobile
robots, planning and reacting have a strong complementarity, each being critical to the
other’s success. The navigation challenge for a robot involves executing a course of action
(or plan) to reach its goal position. During execution, the robot must react to unforeseen
events (e.g., obstacles) in such a way as to still reach the goal. Without reacting, the plan-
ning effort will not pay off because the robot will never physically reach its goal. Without
planning, the reacting effort cannot guide the overall robot behavior to reach a distant goal
– again, the robot will never reach its goal.

An information-theoretic formulation of the navigation problem will make this comple-
mentarity clear. Suppose that a robot  at time  has a map  and an initial belief state

. The robot’s goal is to reach a position  while satisfying some temporal constraints:
. Thus the robot must be at location  at or before timestep n.

Although the goal of the robot is distinctly physical, the robot can only really sense its
belief state, not its physical location, and therefore we map the goal of reaching location 
to reaching a belief state , corresponding to the belief that . With this for-
mulation, a plan  is nothing more than one or more trajectories from  to . In other
words, plan q will cause the robot’s belief state to transition from  to  if the plan is
executed from a world state consistent with both  and . 

Of course the problem is that the latter condition may not be met. It is entirely possible
that the robot’s position is not quite consistent with , and it is even likelier that  is
either incomplete or incorrect. Furthermore, the real-world environment is dynamic. Even
if  is correct as a single snapshot in time, the planner’s model regarding how  changes
over time is usually imperfect.

In order to reach its goal nonetheless, the robot must incorporate new information gained
during plan execution. As time marches forward, the environment changes and the robot’s
sensors gather new information. This is precisely where reacting becomes relevant. In the
best of cases, reacting will modulate robot behavior locally in order to correct the planned-
upon trajectory so that the robot still reaches the goal. At times, unanticipated new infor-
mation will require changes to the robot’s strategic plans, and so ideally the planner also
incorporates new information as that new information is received.

Taken to the limit, the planner would incorporate every new piece of information in real
time, instantly producing a new plan that in fact reacts to the new information appropri-
ately. This theoretical extreme, at which point the concept of planning and the concept of
reacting merge, is called integrated planning and execution and is discussed in section
6.3.4.3.
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to the goal. More formally, we can prove that visibility graph planning is optimal in terms
of the length of the solution path. This powerful result also means that all sense of safety,
in terms of staying a reasonable distance from obstacles, is sacrificed for this optimality.
The common solution is to grow obstacles by significantly more than the robot’s radius, or,
alternatively, to modify the solution path after path planning to distance the path from
obstacles when possible. Of course such actions sacrifice the optimal-length results of vis-
ibility graph path planning.

Voronoi diagram. Contrasting with the visibility graph approach, a Voronoi diagram is a
complete road map method that tends to maximize the distance between the robot and
obstacles in the map. For each point in the free space, compute its distance to the nearest
obstacle. Plot that distance in figure 6.3 as a height coming out of the page. The height
increases as you move away from an obstacle. At points that are equidistant from two or
more obstacles, such a distance plot has sharp ridges. The Voronoi diagram consists of the
edges formed by these sharp ridge points. When the configuration space obstacles are poly-
gons, the Voronoi diagram consists of straight and parabolic segments. Algorithms that

goal

start

Figure 6.3
Voronoi diagram [21]. The Voronoi diagram consists of the lines constructed from all points that are
equidistant from two or more obstacles. The initial  and goal  configurations are mapped
into the Voronoi diagram to  and , each by drawing the line along which its distance to
the boundary of the obstacles increases the fastest. The direction of movement on the Voronoi dia-
gram is also selected so that the distance to the boundaries increases fastest. The points on the Voronoi
diagram represent transitions from line segments (minimum distance between two lines) to parabolic
segments (minimum distance between a line and a point).

qinit qgoal
q'init q'goal
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a gain factor which reduces the repulsive force when an obstacle is parallel to the robot’s
direction of travel, since such an object does not pose an immediate threat to the robot’s
trajectory. The result is enhanced wall following, which was problematic for earlier imple-
mentations of potential fields methods.

The task potential field considers the present robot velocity and from that it filters out
those obstacles that should not affect the near-term potential based on robot velocity. Again
a scaling is made, this time of all obstacle potentials when there are no obstacles in a sector
named  in front of the robot. The sector  is defined as the space which the robot will
sweep during its next movement. The result can be smoother trajectories through space. An
example comparing a classical potential field and an extended potential field is depicted in
figure 6.6.

A great many variations and improvements of the potential field methods have been pro-
posed and implemented by mobile roboticists [67, 111]. In most cases, these variations aim
to improve the behavior of potential fields in local minima while also lowering the chances
of oscillations and instability when a robot must move through a narrow space such as a
doorway.

Potential fields are extremely easy to implement, much like the grassfire algorithm
described in section 6.2.1.2. Thus it has become a common tool in mobile robot applica-
tions in spite of its theoretical limitations.

This completes our brief summary of the path-planning techniques that are most popular
in mobile robotics. Of course, as the complexity of a robot increases (e.g., large degree of

Z Z

Figure 6.6
Comparison between a classical potential field and an extended potential field. Image courtesy of
Raja Chatila [84].
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b) Rotation Potential 
     with parameter β
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One of the central criticisms of Bug-type algorithms is that the robot’s behavior at each
instant is generally a function of only its most recent sensor readings. This can lead to unde-
sirable and yet preventable problems in cases where the robot’s instantaneous sensor read-
ings do not provide enough information for robust obstacle avoidance. The VFH techniques
overcome this limitation by creating a local map of the environment around the robot. This
local map is a small occupancy grid, as described in section 5.7 populated only by relatively
recent sensor range readings. For obstacle avoidance, VFH generates a polar histogram as
shown in figure 6.9. The x-axis represents the angle  at which the obstacle was found and
the y-axis represents the probability  that there really is an obstacle in that direction based
on the occupancy grid’s cell values.

From this histogram a steering direction is calculated. First all openings large enough
for the vehicle to pass through are identified. Then a cost function is applied to every such
candidate opening. The passage with the lowest cost is chosen. The cost function  has
three terms:

 (6.11)

target_direction = alignment of the robot path with the goal;

wheel_orientation = difference between the new direction and the current wheel orien-
tation;

previous_direction = difference between the previously selected direction and the new
direction.

The terms are calculated such that a large deviation from the goal direction leads to a big
cost in the term “target direction”. The parameters , ,  in the cost function  tune the
behavior of the robot. For instance, a strong goal bias would be expressed with a large value
for . For a complete definition of the cost function, refer to [92]. 
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Figure 6.9
Polar histogram [93].

α
0

threshold

P

α
P

G

G a target_direction+b wheel_orientation+c previous_direction⋅⋅⋅=

a b c G

a

Preview from Notesale.co.uk

Page 292 of 336



Planning and Navigation 279

vehicles and so we focus only on the bubble band extension made by Khatib, Jaouni, Cha-
tila, and Laumod [85].

A bubble is defined as the maximum local subset of the free space around a given con-
figuration of the robot that which can be traveled in any direction without collision. The
bubble is generated using a simplified model of the robot in conjunction with range infor-
mation available in the robot’s map. Even with a simplified model of the robot’s geometry,
it is possible to take into account the actual shape of the robot when calculating the bubble’s
size (figure 6.11). Given such bubbles, a band or string of bubbles can be used along the
trajectory from the robot’s initial position to its goal position to show the robot’s expected
free space throughout its path (see figure 6.12).

Clearly, computing the bubble band requires a global map and a global path planner.
Once the path planner’s initial trajectory has been computed and the bubble band is calcu-
lated, then modification of the planned trajectory ensues. The bubble band takes into
account forces from modeled objects and internal forces. These internal forces try to mini-
mize the “slack” (energy) between adjacent bubbles. This process, plus a final smoothing
operation, makes the trajectory smooth in the sense that the robot’s free space will change
as smoothly as possible during path execution.

Of course, so far this is more akin to path optimization than obstacle avoidance. The
obstacle avoidance aspect of the bubble band strategy comes into play during robot motion.
As the robot encounters unforeseen sensor values, the bubble band model is used to deflect
the robot from its originally intended path in a way that minimizes bubble band tension.

An advantage of the bubble band technique is that one can account for the actual dimen-
sions of the robot. However, the method is most applicable only when the environment con-
figuration is well-known ahead of time, just as with off-line path-planning techniques.

Figure 6.11
Shape of the bubbles around the vehicle (courtesy of Raja Chatila [85]).
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affects the robot’s immediate actions and is therefore subject to some temporal constraints,
while a strategic or off-line layer represents decisions that affect the robot’s behavior over
the long term, with few temporal constraints on the module’s response time.

Four important, interrelated trends correlate with temporal decomposition. These are not
set in stone; there are exceptions. Nevertheless, these general properties of temporal
decompositions are enlightening:

Sensor response time. A particular module’s sensor response time can be defined as the
amount of time between acquisition of a sensor-based event and a corresponding change in
the output of the module. As one moves up the stack in figure 6.18 the sensor response time
tends to increase. For the lowest-level modules, the sensor response time is often limited
only by the raw processor and sensor speeds. At the highest-level modules, sensor response
can be limited by slow and deliberate decision-making processes.

Temporal depth. Temporal depth is a useful concept applying to the temporal window
that affects the module’s output, both backward and forward in time. Temporal horizon
describes the amount of look ahead used by the module during the process of choosing an
output. Temporal memory describes the historical time span of sensor input that is used by
the module to determine the next output. Lowest-level modules tend to have very little tem-
poral depth in both directions, whereas the deliberative processes of highest-level modules
make use of a large temporal memory and consider actions based on their long-term con-
sequences, making note of large temporal horizons.

Figure 6.18
Generic temporal decomposition of a navigation architecture.
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Such a serial system uses the internal state of all associated modules and the value of the
robot’s percept  in a sequential manner to compute the next robot action . A pure serial
architecture has advantages relating to predictability and verifiability. Since the state and
outputs of each module depend entirely on the inputs it receives from the module upstream,
the entire system, including the robot, is a single well-formed loop. Therefore, the overall
behavior of the system can be evaluated using well-known discrete forward simulation
methods.

Figure 6.21 depicts the extreme opposite of pure serial control, a fully parallel control
architecture. Because we choose to define r as a module with precisely one input, this par-
allel system includes a special module  that provides a single output for the consumption
of . Intuitively, the fully parallel system distributes responsibility for the system’s control
output  across multiple modules, possibly simultaneously. In a pure sequential system,
the control flow is a linear sequence through a string of modules. Here, the control flow
contains a combination step at which point the result of multiple modules may impact 
in arbitrary ways. 

Thus parallelization of control leads to an important question: how will the output of
each component module inform the overall decision concerning the value of ? One
simple combination technique is temporal switching. In this case, called switched parallel,
the system has a parallel decomposition but at any particular instant in time the output 
can be attributed to one specific module. The value of  can of course depend on a differ-
ent module at each successive time instant, but the instantaneous value of  can always be
determined based on the functions of a single module. For instance, suppose that a robot
has an obstacle avoidance module and a path-following module. One switched control
implementation may involve execution of the path-following recommendation whenever
the robot is more than 50 cm from all sensed obstacles and execution of the obstacle avoid-
ance recommendation when any sensor reports a range closer than 50 cm. 

I O

Figure 6.21
Example of a pure parallel decomposition.
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robot is not kinematically symmetric, and so servoing through a particular obstacle course
may be easier in one direction than the other. 

Pygmalion’s environment representation consists of a continuous geometric model as
well as an abstract topological network for route planning. Thus, if repeated attempts to
clear the obstacle fail, then the robot’s executive will temporarily cut the topological con-
nection between the two appropriate nodes and will launch the planner again, generating a
new set of waypoints to the goal. Next, using recent laser rangefinding data as a type of
local map (see figure 6.25), a geometric path planner will generate a path from the robot’s
current position to the next waypoint.

In summary, episodic planning architectures are extremely popular in the mobile robot
research community. They combine the versatility of responding to environmental changes
and new goals with the fast response of a tactical executive tier and behaviors that control
real-time robot motion. As shown in figure 6.25, it is common in such systems to have both
a short-term local map and a more strategic global map. Part of the executive’s job in such
dual representations is to decide when and if new information integrated into the local map
is sufficiently nontransient to be copied into the global knowledge base.

6.3.4.3   Integrated planning and execution
Of course, the architecture of a commercial mobile robot must include more functionality
than just navigation. But limiting this discussion to the question of navigation architectures
leads to what may at first seem a degenerate solution.

The architecture shown in figure 6.26 may look similar to the off-line planning architec-
ture of figure 6.24, but in fact it is significantly more advanced. In this case, the planner tier
has disappeared because there is no longer a temporal decomposition between the executive

Figure 6.26
An integrated planning and execution architecture in which planning is nothing more than a real-time
execution step (behavior). 
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