
Introduction

to

AI

Robotics
Robin R. Murphy

A Bradford Book
The MIT Press

Cambridge, Massachusetts
London, England

Preview from Notesale.co.uk

Page 4 of 487

Contents

Preface xvii

I Robotic Paradigms 1

1 From Teleoperation To Autonomy 13

1.1 Overview 13
1.2 How Can a Machine Be Intelligent? 15
1.3 What Can Robots Be Used For? 16

1.3.1 Social implications of robotics 18
1.4 A Brief History of Robotics 19

1.4.1 Industrial manipulators 21
1.4.2 Space robotics and the AI approach 26

1.5 Teleoperation 28
1.5.1 Telepresence 32
1.5.2 Semi-autonomous control 33

1.6 The Seven Areas of AI 34
1.7 Summary 37
1.8 Exercises 37
1.9 End Notes 39

2 The Hierarchical Paradigm 41

2.1 Overview 41
2.2 Attributes of the Hierarchical Paradigm 42

2.2.1 Strips 44
2.2.2 More realistic Strips example 46
2.2.3 Strips summary 52

Preview from Notesale.co.uk

Page 10 of 487

Part I 5

What are Robotic Paradigms?

A paradigm is a philosophy or set of assumptions and/or techniques which charac-PARADIGM

terize an approach to a class of problems. It is both a way of looking at the world
and an implied set of tools for solving problems. No one paradigm is right;
rather, some problems seem better suited for different approaches. For ex-
ample, consider calculus problems. There are problems that could be solved
by differentiating in cartesian (X;Y; Z) coordinates, but are much easier to
solve if polar coordinates (r; �) are used. In the domain of calculus problems,
Cartesian and polar coordinates represent two different paradigms for view-
ing and manipulating a problem. Both produce the correct answer, but one
takes less work for certain problems.

Applying the right paradigm makes problem solving easier. Therefore,
knowing the paradigms of AI robotics is one key to being able to successfully
program a robot for a particular application. It is also interesting from a his-
torical perspective to work through the different paradigms, and to examine
the issues that spawned the shift from one paradigm to another.

There are currently three paradigms for organizing intelligence in robots:ROBOTIC PARADIGMS

hierarchical, reactive, and hybrid deliberative/reactive. The paradigms are
described in two ways.

1. By the relationship between the three commonly accepted primitives
of robotics: SENSE, PLAN, ACT. The functions of a robot can be dividedROBOT PARADIGM

PRIMITIVES into three very general categories. If a function is taking in information
from the robot’s sensors and producing an output useful by other func-
tions, then that function falls in the SENSE category. If the function is
taking in information (either from sensors or its own knowledge about
how the world works) and producing one or more tasks for the robot to
perform (go down the hall, turn left, proceed 3 meters and stop), that func-
tion is in the PLAN category. Functions which produce output commands
to motor actuators fall into ACT (turn 98�, clockwise, with a turning veloc-
ity of 0.2mps). Fig. I.2 attempts to define these three primitives in terms
of inputs and outputs; this figure will appear throughout the chapters in
Part I.

2. By the way sensory data is processed and distributed through the sys-
tem. How much a person or robot or animal is influenced by what it
senses. So it is often difficult to adequately describe a paradigm with just
a box labeled SENSE. In some paradigms, sensor information is restricted
to being used in a specific, or dedicated, way for each function of a robot;

Preview from Notesale.co.uk

Page 26 of 487

Part I 7

SENSE PLAN ACT

a.

PLAN

SENSE ACT

b.

ACT

PLAN

SENSE

c.

Figure I.3 Three paradigms: a.) Hierarchical, b.) Reactive, and c.) Hybrid
deliberative/reactive.

turns out to be very hard and brittle due to the frame problem and the need
for a closed world assumption.

Fig. I.4 shows how the Hierarchical Paradigm can be thought of as a tran-
sitive, or Z-like, flow of events through the primitives given in Fig. I.4. Un-
fortunately, the flow of events ignored biological evidence that sensed infor-
mation can be directly coupled to an action, which is why the sensed infor-
mation input is blacked out.

Preview from Notesale.co.uk

Page 28 of 487

14 1 From Teleoperation To Autonomy

telemanipulators

planetary rovers

vision

manufacturing

1960 1970 1980 1990 2000

Industrial
Manipulators

AI Robotics

telesystems

Figure 1.1 A timeline showing forks in development of robots.

placed on the mechanical aspects of the robot to ensure precision and re-
peatability and methods to make sure the robot could move precisely and
repeatable, quickly enough to make a profit. Because assembly lines were
engineered to mass produce a certain product, the robot didn’t have to be
able to notice any problems. The standards for mass production would make
it more economical to devise mechanisms that would ensure parts would be
in the correct place. A robot for automation could essentially be blind and
senseless.

Robotics for the space program took a different fork, concentrating instead
on highly specialized, one-of-a-kind planetary rovers. Unlike a highly auto-
mated manufacturing plant, a planetary rover operating on the dark side of
the moon (no radio communication) might run into unexpected situations.
Consider that on Apollo 17, astronaut and geologist Harrison Schmitt found
an orange rock on the moon; an orange rock was totally unexpected. Ideally,
a robot would be able to notice something unusual, stop what it was doing
(as long as it didn’t endanger itself) and investigate. Since it couldn’t be pre-
programmed to handle all possible contingencies, it had to be able to notice
its environment and handle any problems that might occur. At a minimum,
a planetary rover had to have some source of sensory inputs, some way of
interpreting those inputs, and a way of modifying its actions to respond to
a changing world. And the need to sense and adapt to a partially unknown
environment is the need for intelligence.

The fork toward AI robots has not reached a termination point of truly au-
tonomous, intelligent robots. In fact, as will be seen in Ch. 2 and 4, it wasn’t
until the late 1980’s that any visible progress toward that end was made. So
what happened when someone had an application for a robot which needed

Preview from Notesale.co.uk

Page 35 of 487

1.3 What Can Robots Be Used For? 17

try; processing immune suppressant drugs may expose workers to highly
toxic chemicals.

Another example of a task that poses significant risk to a human is space
exploration. People can be protected in space from the hard vacuum, solar
radiation, etc., but only at great economic expense. Furthermore, space suits
are so bulky that they severely limit an astronaut’s ability to perform simple
tasks, such as unscrewing and removing an electronics panel on a satellite.
Worse yet, having people in space necessitates more people in space. Solar
radiation embrittlement of metals suggests that astronauts building a large
space station would have to spend as much time repairing previously built
portions as adding new components. Even more people would have to be
sent into space, requiring a larger structure. the problem escalates. A study
by Dr. Jon Erickson’s research group at NASA Johnson Space Center argued
that a manned mission to Mars was not feasible without robot drones capable
of constantly working outside of the vehicle to repair problems introduced
by deadly solar radiation.51 (Interestingly enough, a team of three robots
which did just this were featured in the 1971 film, Silent Running, as well as
by a young R2D2 in The Phantom Menace.)

Nuclear physics and space exploration are activities which are often far re-
moved from everyday life, and applications where robots figure more promi-
nently in the future than in current times.

The most obvious use of robots is manufacturing, where repetitious ac-
tivities in unpleasant surroundings make human workers inefficient or ex-
pensive to retain. For example, robot “arms” have been used for welding
cars on assembly lines. One reason that welding is now largely robotic is
that it is an unpleasant job for a human (hot, sweaty, tedious work) with
a low tolerance for inaccuracy. Other applications for robots share similar
motivation: to automate menial, unpleasant tasks—usually in the service in-
dustry. One such activity is janitorial work, especially maintaining public
rest rooms, which has a high turnover in personnel regardless of payscale.
The janitorial problem is so severe in some areas of the US, that the Postal
Service offered contracts to companies to research and develop robots capa-
ble of autonomously cleaning a bathroom (the bathroom could be designed
to accommodate a robot).

Agriculture is another area where robots have been explored as an eco-
nomical alternative to hard to get menial labor. Utah State University has
been working with automated harvesters, using GPS (global positioning sat-
ellite system) to traverse the field while adapting the speed of harvesting
to the rate of food being picked, much like a well-adapted insect. The De-

Preview from Notesale.co.uk

Page 38 of 487

1.4 A Brief History of Robotics 19

olence in 1812, legislation was passed to end worker violence and protect the
mills. The rebelling workers were persecuted. While the Luddite movement
may have been motivated by a quality-of-life debate, the term is often ap-
plied to anyone who objects to technology, or “progress,” for any reason. The
connotation is that Luddites have an irrational fear of technological progress.

The impact of robots is unclear, both what is the real story and how people
interact with robots. The HelpMate Robotics, Inc. robots and janitorial robots
appear to be competing with humans, but are filling a niche where it is hard
to get human workers at any price. Cleaning office buildings is menial and
boring, plus the hours are bad. One janitorial company has now invested in
mobile robots through a Denver-based company, Continental Divide Robot-
ics, citing a 90% yearly turnover in staff, even with profit sharing after two
years. The Robotics Industries Association, a trade group, produces annual
reports outlining the need for robotics, yet possibly the biggest robot money
makers are in the entertainment and toy industries.

The cultural implications of robotics cannot be ignored. While the sheep
shearing robots in Australia were successful and were ready to be commer-
cialized for significant economic gains, the sheep industry reportedly re-
jected the robots. One story goes that the sheep ranchers would not accept
a robot shearer unless it had a 0% fatality rate (it’s apparently fairly easy to
nick an artery on a squirming sheep). But human shearers accidently kill
several sheep, while the robots had a demonstrably better rate. The use of
machines raises an ethical question: is it acceptable for an animal to die at the
hands of a machine rather than a person? What if a robot was performing a
piece of intricate surgery on a human?

1.4 A Brief History of Robotics

Robotics has its roots in a variety of sources, including the way machines are
controlled and the need to perform tasks that put human workers at risk.

In 1942, the United States embarked on a top secret project, called the Man-
hattan Project, to build a nuclear bomb. The theory for the nuclear bomb had
existed for a number of years in academic circles. Many military leaders of
both sides of World War II believed the winner would be the side who could
build the first nuclear device: the Allied Powers led by USA or the Axis, led
by Nazi Germany.

One of the first problems that the scientists and engineers encountered
was handling and processing radioactive materials, including uranium and

Preview from Notesale.co.uk

Page 40 of 487

38 1 From Teleoperation To Autonomy

Exercise 1.5

What is a Luddite?

Exercise 1.6

Describe at least two differences between AI and Engineering approaches to robotics.

Exercise 1.7

List three problems with teleoperation.

Exercise 1.8

Describe the components and the responsibilities of the local and the remote members
of a telesystem.

Exercise 1.9

Describe the difference between telepresence and semi-autonomous control.

Exercise 1.10

List the six characteristics of applications that are well suited for teleoperation. Give
at least two examples of potentially good applications for teleoperation not covered
in the chapter.

Exercise 1.11 [World Wide Web]

Search the world wide web for sites that permit clients to use a robot remotely (one
example is Xavier at Carnegie Mellon University). Decide whether each site is using
human supervisory or shared control, and justify your answer.

Exercise 1.12 [World Wide Web]

Search the world wide web for applications and manufacturers of intelligent robots.

Exercise 1.13 [World Wide Web]

Dr. Harrison “Jack” Schmitt is a vocal proponent for space mining of Near Earth
Objects (NEOs) such as mineral-rich asteroids. Because of the economics of manned
mission, the small size of NEOs, human safety concerns, and the challenges of work-
ing in micro-gravity, space mining is expected to require intelligent robots. Search
the web for more information on space mining, and give examples of why robots are
needed.

Exercise 1.14 [Programming]

(This requires a robot with an on-board video camera and a teleoperation interface.)
Teleoperate the robot through a slalom course of obstacles while keeping the robot
in view as if controlling a RC car. Now looking only at the output of the video cam-
era, repeat the obstacle course. Repeat the comparison several times, and keep track
of the time to complete the course and number of collisions with obstacles. Which
viewpoint led to faster completion of the course? Fewer collisions? Why?

Preview from Notesale.co.uk

Page 59 of 487

2.2 Attributes of the Hierarchical Paradigm 43

SENSE PLAN ACT

Figure 2.2 S,P,A organization of Hierarchical Paradigm.

ROBOT PRIMITIVES INPUT OUTPUT

SENSE

PLAN

ACT

Sensor data Sensed information

Information (sensed
and/or cognitive)

Sensed information
or directives

Directives

Actuator commands

Figure 2.3 Alternative description of how the 3 primitives interact in the Hierarchi-
cal Paradigm.

goal. Finally, the robot acts to carry out the first directive. After the robot has
carried out the SENSE-PLAN-ACT sequence, it begins the cycle again: eyes
open, the robot senses the consequence of its action, replans the directives
(even though the directives may not have changed), and acts.

As shown in Fig. 2.3, sensing in the Hierarchical Paradigm is monolithic:
all the sensor observations are fused into one global data structure, which the
planner accesses. The global data structure is generally referred to as a worldWORLD MODEL

model. The term world model is very broad; “world” means both the outside
world, and whatever meaning the robot ascribes to it. In the Hierarchical
Paradigm, the world model typically contains

1. an a priori (previously acquired) representation of the environment theA PRIORI

robot is operating in (e.g., a map of the building),

2. sensing information (e.g., “I am in a hallway, based on where I’ve trav-
eled, I must be in the northwest hallway”), plus

3. any additional cognitive knowledge that might be needed to accomplish
a task (e.g., all packages received in the mail need to be delivered to Room
118).

Preview from Notesale.co.uk

Page 64 of 487

54 2 The Hierarchical Paradigm

ing the 1970’s and 1980’s worked on either computer vision related issues,
trying to get the robots to be able to better sense the world, or on path plan-
ning, computing the most efficient route around obstacles, etc. to a goal lo-
cation.

2.4 Representative Architectures

As mentioned in Part I an architecture is a method of implementing a para-
digm, of embodying the principles in some concrete way. Ideally, an archi-
tecture is generic; like a good object-oriented program design, it should have
many reusable pieces for other robot platforms and tasks.

Possibly the two best known architectures of the Hierarchical period are
the Nested Hierarchical Controller (NHC) developed by Meystel93 and the
NIST Realtime Control System (RCS) originally developed by Albus,1 with
its teleoperation version for JPL called NASREM.

2.4.1 Nested Hierarchical Controller

As shown in Fig. 2.5, the Nested Hierarchical Controller architecture has
components that are easily identified as either SENSE, PLAN, or ACT. The
robot begins by gathering observations from its sensors and combining those
observations to form the World Model data structure through the SENSE
activity. The World Model may also contain a priori knowledge about the
world, for example, maps of a building, rules saying to stay away from the
foyer during the start and finish of business hours, etc. After the World
Model has been created or updated, then the robot can PLAN what actions
it should take. Planning for navigation has a local procedure consisting of
three steps executed by the Mission Planner, Navigator, and Pilot. Each of
these modules has access to the World Model in order to compute their por-
tion of planning. The last step in planning is for the Pilot module to generate
specific actions for the robot to do (e.g., Turn left, turn right, move straight at
a velocity of 0.6 meters per second). These actions are translated into actua-
tor control signals (e.g., Velocity profile for a smooth turn) by the Low-Level
Controller. Together, the Low-Level Controller and actuators form the ACT
portion of the architecture.

The major contribution of NHC was its clever decomposition of planning
into 3 different functions or subsystems aimed at supporting navigation: the
Mission Planner, the Navigator, and the Pilot. As shown in Fig. 2.6, the Mis-MISSION PLANNER

NAVIGATOR

PILOT
sion Planner either receives a mission from a human or generates a mission

Preview from Notesale.co.uk

Page 75 of 487

2.4 Representative Architectures 57

NHC has several advantages. It differs from Strips in that it interleaves
planning and acting. The robot comes up with a plan, starts executing it,
then changes it if the world is different than it expected. Notice that the de-
composition is inherently hierarchical in intelligence and scope. The Mission
Planner is “smarter” than the Navigator, who is smarter than the Pilot. The
Mission Planner is responsible for a higher level of abstraction then the Nav-
igator, etc. We will see that other architectures, both in the Hierarchical and
Hybrid paradigms, will make use of the NHC organization.

One disadvantage of the NHC decomposition of the planning function is
that it is appropriate only for navigation tasks. The division of responsibili-
ties seems less helpful, or clear, for tasks such as picking up a box, rather than
just moving over to it. The role of a Pilot in controlling end-effectors is not
clear. At the time of its initial development, NHC was never implemented
and tested on a real mobile robot; hardware costs during the Hierarchical
period forced most roboticists to work in simulation.

2.4.2 NIST RCS

Jim Albus at the National Bureau of Standards (later renamed the National
Institute of Standards and Technology or NIST) anticipated the need for intel-
ligent industrial manipulators, even as engineering and AI researchers were
splitting into two groups. He saw that one of the major obstacles in apply-
ing AI to manufacturing robots was that there were no common terms, no
common set of design standards. This made industry and equipment man-
ufacturers leery of AI, for fear of buying an expensive robot that would not
be compatible with robots purchased in the future. He developed a very de-
tailed architecture called the Real-time Control System (RCS) Architecture to
serve as a guide for manufacturers who wanted to add more intelligence to
their robots. RCS used NHC in its design, as shown in Fig. 2.7.

SENSE activities are grouped into a set of modules under the heading
of sensory perception. The output of the sensors is passed off to the world
modeling module which constructs a global map using information in its
associated knowledge database about the sensors and any domain know-
ledge (e.g., the robot is operating underwater). This organization is similar
to NHC. The main difference is that the sensory perception module intro-
duces a useful preprocessing step between the sensor and the fusion into a
world model. As will be seen in Ch. 6, sensor preprocessing is often referred
to as feature extraction.

Preview from Notesale.co.uk

Page 78 of 487

58 2 The Hierarchical Paradigm

SENSE MODEL ACT

SENSE PLAN ACT Sample Activities

Mission Planner

Navigator

Pilot

a.

Sensory
Perception

World
Modeling

Behavior
Generation

Knowledge
Database

Value
Judgment

changes
and

events

observed
input

perception,
focus of
attention

plans,
state of
actions

commanded
actions

task
goals

simulated
plans

SENSE PLAN

ACT

b.

Figure 2.7 Layout of RCS: a.) hierarchical layering of sense-model-act, and b.) func-
tional decomposition.

Preview from Notesale.co.uk

Page 79 of 487

74 3 Biological Foundations of the Reactive Paradigm

use of the word “reactive” in ethology is at odds with the way the word is
used in robotics. In ethology, reactive behavior means learned behaviors or a
skill; in robotics, it connotes a reflexive behavior. If the reader is unaware of
these differences, it may be hard to read either the ethological or AI literature
without being confused.

3.2.1 Reflexive behaviors

Reflexive types of behaviors are particularly interesting, since they imply no
need for any type of cognition: if you sense it, you do it. For a robot, this
would be a hardwired response, eliminating computation and guaranteed to
be fast. Indeed, many kit or hobby robots work off of reflexes, represented
by circuits.

Reflexive behaviors can be further divided into three categories:10

1. reflexes: where the response lasts only as long as the stimulus, and theREFLEXES

response is proportional to the intensity of the stimulus.

2. taxes: where the response is to move to a particular orientation. Baby tur-TAXES

tles exhibit tropotaxis; they are hatched at night and move to the brightest
light. Until recently the brightest light would be the ocean reflecting the
moon, but the intrusion of man has changed that. Owners of beach front
property in Florida now have to turn off their outdoor lights during hatch-
ing season to avoid the lights being a source for tropotaxis. Baby turtles
hatch at night, hidden from shore birds who normally eat them. It had
been a mystery as to how baby turtles knew which way was the ocean
when they hatched. The story goes that a volunteer left a flashlight on the
sand while setting up an experiment intended to show that the baby tur-
tles used magnetic fields to orient themselves. The magnetic field theory
was abandoned after the volunteers noticed the baby turtles heading for
the flashlight! Ants exhibit a particular taxis known as chemotaxis; they
follow trails of pheromones.

3. fixed-action patterns: where the response continues for a longer durationFIXED-ACTION

PATTERNS than the stimulus. This is helpful for fleeing predators. It is important to
keep in mind that a taxis can be any orientation relative to a stimulus, not
just moving towards.

The above categories are not mutually exclusive. For example, an animal
going over rocks or through a forest with trees to block its view might persist

Preview from Notesale.co.uk

Page 95 of 487

3.3 Coordination and Control of Behaviors 75

(fixed-action patterns) in orienting itself to the last sensed location of a food
source (taxis) when it loses sight of it.

The tight coupling of action and perception can often be quantified by
mathematical expressions. An example of this is orienting in angelfish. In
order to swim upright, an angelfish uses an internal (idiothetic) sense of grav-IDIOTHETIC

ity combined with its vision sense (allothetic) to see the external percept ofALLOTHETIC

the horizon line of the water to swim upright. If the fish is put in a tank with
prisms that make the horizon line appear at an angle, the angelfish will swim
cockeyed. On closer inspection, the angle that the angelfish swims at is the
vector sum of the vector parallel to gravity with the vector perpendicular to
the perceived horizon line! The ability to quantify animal behavior suggests
that computer programs can be written which do likewise.

3.3 Coordination and Control of Behaviors

Konrad Lorenz and Niko Tinbergen were the founding fathers of ethology.KONRAD LORENZ

NIKO TINBERGEN Each man independently became fascinated not only with individual behav-
iors of animals, but how animals acquired behaviors and selected or coordi-
nated sets of behaviors. Their work provides some insight into four different
ways an animal might acquire and organize behaviors. Lorenz and Tinber-
gen’s work also helps with a computational theory Level 2 understanding of
how to make a process out of behaviors.

The four ways to acquire a behavior are:

1. to be born with a behavior (innate). An example is the feeding behavior inINNATE

baby arctic terns. Arctic terns, as the name implies, live in the Arctic where
the terrain is largely shades of black and white. However, the Arctic tern
has a bright reddish beak. When babies are hatched and are hungry, they
peck at the beak of their parents. The pecking triggers a regurgitation
reflex in the parent, who literally coughs up food for the babies to eat. It
turns out that the babies do not recognize their parents, per se. Instead,
they are born with a behavior that says: if hungry, peck at the largest red
blob you see. Notice that the only red blobs in the field of vision should
be the beaks of adult Arctic terns. The largest blob should be the nearest
parent (the closer objects are, the bigger they appear). This is a simple,
effective, and computationally inexpensive strategy.

2. to be born with a sequence of innate behaviors. The animal is born with aSEQUENCE OF INNATE

BEHAVIORS sequence of behaviors. An example is the mating cycle in digger wasps.

Preview from Notesale.co.uk

Page 96 of 487

3.3 Coordination and Control of Behaviors 79

with predator movement) or a group of neurons which do the equivalent of
a computer algorithm.

Another important point about IRMs is that the releaser can be a compound
of releasers. Furthermore, the releaser can be a combination of either externalCOMPOUND RELEASERS

(from the environment) or internal (motivation). If the releaser in the com-
pound isn’t satisfied, the behavior isn’t triggered. The pseudo-code below
shows a compound releaser.

enum Releaser={PRESENT, NOT_PRESENT};

Releaser food;
while (TRUE)

{

food = senseFood();

hungry = checkState();

if (food == PRESENT && hungry==PRESENT)

feed();

}

The next example below shows what happens in a sequence of behaviors,
where the agent eats, then nurses its young, then sleeps, and repeats the
sequence. The behaviors are implicitly chained together by their releasers.IMPLICIT CHAINING

Once the initial releaser is encountered, the first behavior occurs. It executes
for one second (one “movement” interval), then control passes to the next
statement. If the behavior isn’t finished, the releasers remain unchanged and
no other behavior is triggered. The program then loops to the top and the
original behavior executes again. When the original behavior has completed,
the internal state of the animal may have changed or the state of the environ-
ment may have been changed as a result of the action. When the motivation
and environment match the stimulus for the releaser, the second behavior is
triggered, and so on.

enum Releaser={PRESENT, NOT_PRESENT};

Releaser food, hungry, nursed;

while (TRUE) {

food = sense();

hungry = checkStateHunger();

child = checkStateChild();

if (hungry==PRESENT)

searchForFood(); //sets food = PRESENT when done

if (hungry==PRESENT && food==PRESENT)

feed(); // sets hungry = NOT_PRESENT when done

Preview from Notesale.co.uk

Page 100 of 487

86 3 Biological Foundations of the Reactive Paradigm

Gibson referred to his work as an “ecological approach” because he be-
lieved that perception evolved to support actions, and that it is silly to try
to discuss perception independently of an agent’s environment, and its sur-
vival behaviors. For example, a certain species of bees prefers one special
type of poppy. But for a long time, the scientists couldn’t figure out how the
bees recognized that type of poppy because as color goes, it was indistin-
guishable from another type of poppy that grows in the same area. Smell?
Magnetism? Neither. They looked at the poppy under UV and IR light. In
the non-visible bands that type of poppy stood out from other poppy species.
And indeed, the scientists were able to locate retinal components sensitive
to that bandwidth. The bee and poppy had co-evolved, where the poppy’s
color evolved to a unique bandwidth while at the same time the bee’s retina
was becoming specialized at detecting that color. With a retina “tuned” for
the poppy, the bee didn’t have to do any reasoning about whether there was
a poppy in view, and, if so, was it the right species of poppy. If that color was
present, the poppy was there.

Fishermen have exploited affordances since the beginning of time. A fish-
ing lure attempts to emphasize those aspects of a fish’s desired food, pre-
senting the strongest stimulus possible: if the fish is hungry, the stimulus of
the lure will trigger feeding. As seen in Fig. 3.6, fishing lures often look to a
human almost nothing like the bait they imitate.

What makes Gibson so interesting to roboticists is that an affordance is di-
rectly perceivable. Direct perception means that the sensing process doesn’tDIRECT PERCEPTION

require memory, inference, or interpretation. This means minimal computa-
tion, which usually translates to very rapid execution times (near instanta-
neous) on a computer or robot.

But can an agent actually perceive anything meaningful without some
memory, inference, or interpretation? Well, certainly baby arctic terns don’t
need memory or inference to get food from a parent. And they’re definitely
not interpreting red in the sense of: “oh, there’s a red blob. It’s a small oval,
which is the right shape for Mom, but that other one is a square, so it must
be a graduate ethology student trying to trick me.” For baby arctic terns, it’s
simply: red = food, bigger red = better.

Does this work for humans? Consider walking down the hall and some-
body throws something at you. You will most likely duck. You also probably
ducked without recognizing the object, although later you may determine it
was only a foam ball. The response happens too fast for any reasoning: “Oh
look, something is moving towards me. It must be a ball. Balls are usually
hard. I should duck.” Instead, you probably used a phenomena so basic that

Preview from Notesale.co.uk

Page 107 of 487

3.4 Perception in Behaviors 87

Figure 3.6 A collection of artificial bait, possibly the first example of humans ex-
ploiting affordances. Notice that the lures exaggerate one or more attributes of what
a fish might eat.

you haven’t noticed it, called optic flow. Optic flow is a neural mechanismOPTIC FLOW

for determining motion. Animals can determine time to contact quite easily
with it. You probably are somewhat familiar with optic flow from driving in
a car. When driving or riding in a car, objects in front seem to be in clear focus
but the side of the road is a little blurry from the speed. The point in space
that the car is moving to is the focus of expansion. From that point outward,
there is a blurring effect. The more blurring on the sides, the faster the car is
going. (They use this all the time in science fiction movies to simulate faster-
than-light travel.) That pattern of blurring is known as a flow field (because
it can be represented by vectors, like a gravitational or magnetic field). It is
straightforward, neurally, to extract the time to contact, represented in theTIME TO CONTACT

cognitive literature by � .
Gannets and pole vaulters both use optic flow to make last-minute, pre-

cise movements as reflexes. Gannets are large birds which dive from high
altitudes after fish. Because the birds dive from hundreds of feet up in the
air, they have to use their wings as control surfaces to direct their dive at the
targeted fish. But they are plummeting so fast that if they hit the water with
their wings open, the hollow bones will shatter. Gannets fold their wings just
before hitting the water. Optic flow allows the time to contact, � , to be a stim-
ulus: when the time to contact dwindles below a threshold, fold those wings!

Preview from Notesale.co.uk

Page 108 of 487

3.4 Perception in Behaviors 89

a.

b.

Figure 3.7 The GRUFF system: a.) input, and b.) different types of chairs recognized
by GRUFF. (Figures courtesy of Louise Stark.)

the function of sittability. And that affordance of sittability should be some-
thing that can be extracted from an image:

� Without memory (the agent doesn’t need to memorize all the chairs in the
world).

� Without inference (the robot doesn’t need to reason: “if it has 4 legs, and a
seat and a back, then it’s a chair; we’re in an area which should have lots
of chairs, so this makes it more likely it’s a chair”).

� Without an interpretation of the image (the robot doesn’t need to reason:
“there’s an arm rest, and a cushion, . . . ”). A computer should just be able
to look at a picture and say if something in that picture is sittable or not.

Preview from Notesale.co.uk

Page 110 of 487

94 3 Biological Foundations of the Reactive Paradigm

to use for different environmental conditions. Schema theory is expressive
enough to represent basic concepts like IRMs, plus it supports building new
behaviors out of primitive components. This will be discussed in more detail
in later chapters.

This alternative way of creating a behavior by choosing between alterna-
tive perceptual and motor schemas can be thought of as:

Behavior::Schema

Data environmental_state

Methods choose_PS(environmental_state)
perceptual_schema_1()
perceptual_schema_2()
motor_schema()

Arbib and colleagues did work constructing computer models of visually
guided behaviors in frogs and toads. They used schema theory to represent
the toad’s behavior in computational terms, and called their model rana com-RANA COMPUTATRIX

putatrix (rana is the classification for toads and frogs). The model explained
Ingle’s observations as to what occasionally happens when a toad sees two
flies at once.33 Toads and frogs can be characterized as responding visually
to either small, moving objects and large, moving objects. Small, moving ob-
jects release the feeding behavior, where the toad orients itself towards the
object (taxis) and then snaps at it. (If the object turns out not to be a fly,
the toad can spit it out.) Large moving objects release the fleeing behavior,
causing the toad to hop away. The feeding behavior can be modeled as a
behavioral schema, or template, shown in Fig. 3.9.

When the toad sees a fly, an instance of the behavior is instantiated; the
toad turns toward that object and snaps at it. Arbib’s group went one level
further on the computational theory.7 They implemented the taxis behavior
as a vector field: rana computatrix would literally feel an attractive force
along the direction of the fly. This direction and intensity (magnitude) was
represented as a vector. The direction indicated where rana had to turn and
the magnitude indicated the strength of snapping. This is shown in Fig. 3.10.

What is particularly interesting is that the rana computatrix program pre-
dicts what Ingle saw in real toads and frogs when they are presented with
two flies simultaneously. In this case, each fly releases a separate instance of
the feeding behavior. Each behavior produces the vector that the toad needs
to turn to in order to snap at that fly, without knowing that the other be-

Preview from Notesale.co.uk

Page 115 of 487

3.6 Principles and Issues in Transferring Insights to Robots 97

activation
condition

motor schema perceptual schema

fly1

snap locate_fly

behavior

motor SI perceptual SI

percept,
gain

action,
intensity

snap(fly1) locate_fly(fly1)

(x,y,z),
100%

snap at (x,y,z)
with all strength

behavior

motor SI perceptual SI

percept,
gain

action,
intensity

snap(fly2) locate_fly(fly2)

(x,y,z),
100%

snap at (x,y,z)
with all strength

fly2

vector summation:
snaps at the "average"

(x,y,z)

Figure 3.11 Schema theory of a frog snapping at a fly when presented with two flies
equidistant.

it also inhibits the perceptual schema for feeding. As a result, the inhibition
keeps the frog from trying to both flee from predators and eat them.

3.6 Principles and Issues in Transferring Insights to Robots

To summarize, some general principles of natural intelligence which may be
useful in programming robots:PRINCIPLES FOR

PROGRAMMING

� Programs should decompose complex actions into independent behav-
iors, which tightly couple sensing and acting. Behaviors are inherently
parallel and distributed.

� In order to simplify control and coordination of behaviors, an agent should
rely on straightforward, boolean activation mechanisms (e.g. IRM).

Preview from Notesale.co.uk

Page 118 of 487

98 3 Biological Foundations of the Reactive Paradigm

� In order to simplify sensing, perception should filter sensing and consider
only what is relevant to the behavior (action-oriented perception).

� Direct perception (affordances) reduces the computational complexity of
sensing, and permits actions to occur without memory, inference, or in-
terpretation.

� Behaviors are independent, but the output from one 1) may be combined
with another to produce a resultant output, or 2) may serve to inhibit
another (competing-cooperating).

Unfortunately, studying natural intelligence does not give a complete pic-
ture of how intelligence works. In particular there are several unresolved
issues:UNRESOLVED ISSUES

� How to resolve conflicts between concurrent behaviors? Robots will be re-
quired to perform concurrent tasks; for example, a rescue robot sent in
to evacuate a building will have to navigate hallways while looking for
rooms to examine for people, as well as look for signs of a spreading fire.
Should the designer specify dominant behaviors? Combine? Let conflict-
ing behaviors cancel and have alternative behavior triggered? Indeed, one
of the biggest divisions in robot architectures is how they handle concur-
rent behaviors.

� When are explicit knowledge representations and memory necessary? Direct
perception is wonderful in theory, but can a designer be sure that an af-
fordance has not been missed?

� How to set up and/or learn new sequences of behaviors? Learning appears to be
a fundamental component of generating complex behaviors in advanced
animals. However, the ethological and cognitive literature is unsure of
the mechanisms for learning.

It is also important to remember that natural intelligence does not map
perfectly onto the needs and realities of programming robots. One major
advantage that animal intelligence has over robotic intelligence is evolution.
Animals evolved in a way that leads to survival of the species. But robots are
expensive and only a small number are built at any given time. Therefore, in-
dividual robots must “survive,” not species. This puts tremendous pressure
on robot designers to get a design right the first time. The lack of evolution-
ary pressures over long periods of time makes robots extremely vulnerable
to design errors introduced by a poor understanding of the robot’s ecology.

Preview from Notesale.co.uk

Page 119 of 487

3.8 Exercises 101

Exercise 3.2

Explain in one or two sentences each of the following terms: reflexes, taxes, fixed-
action patterns, schema, affordance.

Exercise 3.3

Represent a schema, behavior, perceptual schema, and motor schema with an Object-
Oriented Design class diagram.

Exercise 3.4

Many mammals exhibit a camouflage meta-behavior. The animal freezes when it sees
motion (an affordance for a predator) in an attempt to become invisible. It persists un-
til the predator is very close, then the animal flees. (This explains why squirrels freeze
in front of cars, then suddenly dash away, apparently flinging themselves under the
wheels of a car.) Write pseudo-code of the behaviors involved in the camouflage
behavior in terms of innate releasing mechanisms, identifying the releasers for each
behavior.

Exercise 3.5

Consider a mosquito hunting for a warm-blooded mammal and a good place to bite
them. Identify the affordance for a warm-blooded mammal and the associated be-
havior. Represent this with schema theory (perceptual and motor schemas).

Exercise 3.6

One method for representing the IRM logic is to use finite state automata (FSA),
which are commonly used in computer science. If you have seen FSAs, consider a
FSA where the behaviors are states and releasers serve as the transitions between
state. Express the sequence of behaviors in a female digger wasp as a FSA.

Exercise 3.7

Lego Mindstorms and Rug Warrior kits contain sensors and actuators which are cou-
pled together in reflexive behaviors. Build robots which:

a. Reflexive avoid: turn left when they touch something (use touch sensor and two
motors)

b. Phototaxis: follow a black line (use the IR sensor to detect the difference between
light and dark)

c. Fixed-action pattern avoid: back up and turn right when robot encounters a “neg-
ative obstacle” (a cliff)

Exercise 3.8

What is the difference between direct perception and recognition?

Exercise 3.9

Consider a cockroach, which typically hides when the lights are turned on. Do you
think the cockroach is using direct perception or recognition of a hiding place? Ex-
plain why. What are the percepts for the cockroach?

Preview from Notesale.co.uk

Page 122 of 487

4.1 Overview 107

SENSE ACT

SENSE ACT

SENSE ACT

SENSE ACT

build maps

explore

wander

avoid collisions

actuatorssensors

Figure 4.2 Vertical decomposition of tasks into an S-A organization, associated with
the Reactive Paradigm.

Arkin and Payton used a potential fields methodology, favoring software
implementations. Both approaches are equivalent. The Reactive Paradigm
was initially met with stiff resistance from traditional customers of robot-
ics, particularly the military and nuclear regulatory agencies. These users of
robotic technologies were uncomfortable with the imprecise way in which
discrete behaviors combine to form a rich emergent behavior. In particular,
reactive behaviors are not amenable to mathematical proofs showing they
are sufficient and correct for a task. In the end, the rapid execution times
associated with the reflexive behaviors led to its acceptance among users,
just as researchers shifted to the Hybrid paradigm in order to fully explore
layering of intelligence.

Preview from Notesale.co.uk

Page 128 of 487

114 4 The Reactive Paradigm

Figure 4.5 “Veteran” robots of the MIT AI Laboratory using the subsumption archi-
tecture. (Photograph courtesy of the MIT Artificial Intelligence Laboratory.)

to walk, avoid collisions, and climb over obstacles without the “move-think-
move-think” pauses of Shakey.

The term “behavior” in the subsumption architecture has a less precise
meaning than in other architectures. A behavior is a network of sensing and
acting modules which accomplish a task. The modules are augmented finite
state machines AFSM, or finite state machines which have registers, timers,
and other enhancements to permit them to be interfaced with other modules.
An AFSM is equivalent to the interface between the schemas and the coor-
dinated control strategy in a behavioral schema. In terms of schema theory,
a subsumption behavior is actually a collection of one or more schemas into
an abstract behavior.

Behaviors are released in a stimulus-response way, without an external
program explicitly coordinating and controlling them. Four interesting as-
pects of subsumption in terms of releasing and control are:

1. Modules are grouped into layers of competence. The layers reflect a hi-LAYERS OF

COMPETENCE erarchy of intelligence, or competence. Lower layers encapsulate basic
survival functions such as avoiding collisions, while higher levels create

Preview from Notesale.co.uk

Page 135 of 487

120 4 The Reactive Paradigm

The use of layers and subsumption allows new layers to be built on top
of less competent layers, without modifying the lower layers. This is good
software engineering, facilitating modularity and simplifying testing. It also
adds some robustness in that if something should disable the Level 1 behav-
iors, Level 0 might remain intact. The robot would at least be able to preserve
its self-defense mechanism of fleeing from approaching obstacles.

Fig. 4.10 shows Level 1 recast as behaviors. Note that FEELFORCE was
used by both RUNAWAY and AVOID. FEELFORCE is the perceptual component
(or schema) of both behaviors, with the AVOID and RUNAWAY modules being
the motor component (or schema). As is often the case, behaviors are usu-
ally named after the observable action. This means that the behavior (which
consists of perception and action) and the action component have the same
name. The figure does not show that the AVOID and RUNAWAY behaviors
share the same FEELFORCE perceptual schema. As will be seen in the next
chapter, the object-oriented properties of schema theory facilitate the reuse
and sharing of perceptual and motor components.

Now consider adding a third layer to permit the robot to move down cor-LEVEL 2: FOLLOW

CORRIDORS ridors, as shown in Fig. 4.11. (The third layer in Brooks’ original paper is
“explore,” because he was considering a mapping task.) The LOOK mod-
ule examines the sonar polar plot and identifies a corridor. (Note that this
is another example of behaviors sharing the same sensor data but using it
locally for different purposes.) Because identifying a corridor is more com-
putationally expensive than just extracting range data, LOOKmay take longer
to run than behaviors at lower levels. LOOK passes the vector representing
the direction to the middle of the corridor to the STAYINMIDDLE module.
STAYINMIDDLE subsumes the WANDER module and delivers its output to
the AVOID module which can then swerve around obstacles.

But how does the robot get back on course if the LOOK module has not
computed a new direction? In this case, the INTEGRATE module has been
observing the robots actual motions from shaft encoders in the actuators.
This gives an estimate of how far off course the robot has traveled since the
last update by LOOK. STAYINMIDDLE can use the dead reckoning data with
the intended course to compute the new course vector. It serves to fill in
the gaps in mismatches between updates rates of the different modules. No-
tice that LOOK and STAYINMIDDLE are quite sophisticated from a software
perspective.
INTEGRATE is an example of a module which is supplying a dangerous

internal state: it is actually substituting for feedback from the real world. If
for some reason, the LOOK module never updates, then the robot could op-

Preview from Notesale.co.uk

Page 141 of 487

4.4 Potential Fields Methodologies 123

describe here, so instead a generalization will be presented. Potential field
styles of behaviors always use vectors to represent behaviors and vector sum-VECTORS

VECTOR SUMMATION mation to combine vectors from different behaviors to produce an emergent
behavior.

4.4.1 Visualizing potential fields

The first tenet of a potential fields architecture is that the motor action of a
behavior must be represented as a potential field. A potential field is an array,
or field, of vectors. As described earlier, a vector is a mathematical construct
which consists of a magnitude and a direction. Vectors are often used to
represent a force of some sort. They are typically drawn as an arrow, where
the length of the arrow is the magnitude of the force and the angle of the
arrow is the direction. Vectors are usually represented with a boldface capital
letter, for example, V. A vector can also be written as a tuple (m; d), where m
stands for magnitude and d for direction. By convention the magnitude is a
real number between 0.0 and 1, but the magnitude can be any real number.

The array represents a region of space. In most robotic applications, theARRAY REPRESENTING

A FIELD space is in two dimensions, representing a bird’s eye view of the world just
like a map. The map can be divided into squares, creating a (x,y) grid. Each
element of the array represents a square of space. Perceivable objects in the
world exert a force field on the surrounding space. The force field is anal-
ogous to a magnetic or gravitation field. The robot can be thought of as a
particle that has entered the field exuded by an object or environment. The
vector in each element represents the force, both the direction to turn and the
magnitude or velocity to head in that direction, a robot would feel if it were
at that particular spot. Potential fields are continuous because it doesn’t mat-
ter how small the element is; at each point in space, there is an associated
vector.

Fig. 4.12 shows how an obstacle would exert a field on the robot and make
it run away. If the robot is close to the obstacle, say within 5 meters, it is inside
the potential field and will fell a force that makes it want to face directly away
from the obstacle (if it isn’t already) and move away. If the robot is not within
range of the obstacle, it just sits there because there is no force on it. Notice
that the field represents what the robot should do (the motor schema) based
on if the robot perceives an obstacle (the perceptual schema). The field isn’t
concerned with how the robot came to be so close to the obstacle; the robot
feels the same force if it were happening to move within range or if it was
just sitting there and someone put their hand next to the robot.

Preview from Notesale.co.uk

Page 144 of 487

4.4 Potential Fields Methodologies 135

multiple range sensors? Bigger obstacles will be detected by multiple sensors
at the same time. The common way is to have a RUNAWAY behavior for each
sensor. This called multiple instantiations of the same behavior. Below is
a code fragment showing multiple instantiations; all that had to be done is
add a for loop to poll each sensor. This takes advantage of two properties
of vector addition: it is associative (a+b+c+d can be performed as ((a+ b) +

c) + d), and it is commutative (doesn’t matter what order the vectors are
summed).

while (robot==ON) {

vector.mag=vector.dir=0.0; //initialize to 0

for (i=0; i<=numberIR; i++) {

vectorCurrent=Runaway(i); // accept a sensor number

vectorOutput = VectorSum(tempVector,vectorCurrent);

}

turn(vector.direction);

forward(vector.magnitude*MAX-VELOCITY);

}

As seen in Fig. 4.19, the robot is able to get out of the cave-like trap called
a box canyon without building a model of the wall. Each instance contributesBOX CANYON

a vector, some of which have a X or Y component that cancels out.
From an ethological perspective, the above program is elegant because it

is equivalent to behavioral instantiations in animals. Recall from Ch. 3 the
model of rana computrix and its real-life toad counterpart where each eye
sees and responds to a fly independently of the other eye. In this case, the
program is treating the robot as if it had 8 independent eyes!

From a robotics standpoint, the example illustrates two important points.
First, the direct coupling of sensing to action works. Second, behavioral
programming is consistent with good software engineering practices. The
RUNAWAY function exhibits functional cohesion, where the function does oneFUNCTIONAL

COHESION thing well and every statement in the function has something directly to do
with the function’s purpose.122 Functional cohesion is desirable, because it
means the function is unlikely to introduce side effects into the main program
or be dependent on another function. The overall organization shows dataDATA COUPLING

coupling, where each function call takes a simple argument.122 Data coupling
is good, because it means all the functions are independent; for example, the
program can be easily changed to accommodate more IRs sensors.

Preview from Notesale.co.uk

Page 156 of 487

138 4 The Reactive Paradigm

Figure 4.20 Level 0 redone as Potential Fields Methodology.

to move every n seconds. This would be represented by a uniform field
where the robot felt the same attraction to go a certain direction, regardless of
location, for n seconds. However, by combining the output of WANDER with
the output vectors from RUNAWAYpf, the need for a new AVOID behavior
is eliminated. The WANDER vector is summed with the repulsive vectors,
and as a result, the robot moves both away from the obstacles and towards
the desired direction. This is shown in Fig. 4.22. The primary differences
in this example are that potential fields explicitly encapsulate sensing and
acting into primitive behaviors, and it did not have to subsume any lower
behaviors. As with subsumption, the robot became more intelligent when
the WANDERpf behavior was added to the RUNAWAYpf behavior.

Now consider how Level 3, corridor following, would be implemented in
a potential field system. This further illustrates the conceptual differences
between the two approaches. The robot would have two concurrent behav-
iors: RUNAWAYpf and follow-corridor. RUNAWAYpf would remain the
same as before, but WANDER would be discarded. In the parlance of potential
fields, the task of following a corridor requires only two behaviors, while the
task of wandering requires two different behaviors.

Preview from Notesale.co.uk

Page 159 of 487

4.4 Potential Fields Methodologies 139

Figure 4.21 Level 1 redone with Potential Fields Methodology.

Figure 4.22 Example resultant vector of WANDERpf and RUNAWAYpf.

Preview from Notesale.co.uk

Page 160 of 487

140 4 The Reactive Paradigm

Figure 4.23 The a.) perpendical and b.) uniform fields combining into c.) a
follow-corridor field.

The follow-corridor behavior is interesting, because it requires a more
complex potential field. As shown in Fig. 4.23, it would be desirable for
the robot to stay in the middle of the corridor. This can be accomplished
using two potential fields: a uniform field perpendicular to the left boundary
and pointing to the middle, and a uniform field perpendicular to the right
boundary and pointing to the middle. Notice that both fields have a linear
decrease in magnitude as the field nears the center of the corridor. In practice,
this taper prevents the robot from see-sawing in the middle.

Also notice that the two uniform fields are not sufficient because they do
not permit the robot to move forward; the robot would move to the middle
of the corridor and just sit there. Therefore, a third uniform field is added
which is parallel to the corridor. All three fields combined yield a smooth
field which sharply pushes the robot back to the middle of the corridor as a
function of its proximity to a wall. In the meantime, the robot is constantly
making forward progress. The figure below shows the fields involved. Re-

Preview from Notesale.co.uk

Page 161 of 487

Preview from Notesale.co.uk

Page 175 of 487

5.2 Behaviors as Objects in OOP 159

It is better software engineering to write a general move to goal behavior,
where only what is the goal—a red region or a blue region—varies. The goal
for the current instance can be passed in at instantiation through the object
constructor.

Writing a single generic behavior for move_to_goal(color) is more
desirable than writing a move_to_red and a move_to_blue behaviors.
From a software engineering perspective, writing two behaviors which do
the same thing is an opportunity to introduce a programming bug in one
of them and not notice because they are supposed to be the same. Generic
behaviors also share the same philosophy as factoring in mathematics. Con-
sider simplifying the equation 45x2 + 90x+ 45. The first step is to factor out
any common term to simplify the equation. In this case, 45 can be factored
and the equation rewritten as 45(x + 1)2. The color of the goal, red or blue,
was like the common coefficient of 45; it is important, but tends to hide that
the key to the solution was the move-to-goal part, or x.

Modular, generic code can be handled nicely by schemas as shown in
Fig. 5.2. The behavior move_to_goalwould consist of a perceptual schema,
which will be called extract-goal, and a motor schema, which uses an
attractive field called pfields.attraction. extract-goal uses the af-
fordance of color to extract where the goal is in the image, and then computes
the angle to the center of the colored region and the size of the region. This
information forms the percept of the goal; the affordance of the Coke can isAFFORDANCE

the color, while the information extracted from the perception is the angle
and size. The attraction motor schema takes that percept and is responsible
for using it to turn the robot to center on the region and move forward. It
can do this easily by using an attractive field, where the larger the region, the
stronger the attraction and the faster the robot moves.

The move_to_goalbehavior can be implemented as a primitive behavior,
where goal_color is a numerical means of representing different colors
such as red and blue:

move_to_goal(goal_color):
Object Behavioral Analog Identifier
Data percept goal_angle

goal_strength
Methods perceptual_schema extract_goal(goal_color)

motor_schema pfields.attraction(goal_angle, goal_strength)

The above table implies some very important points about programming
with behaviors:

Preview from Notesale.co.uk

Page 180 of 487

166 5 Designing a Reactive Implementation

the competition favored an entry which could complete the course without accruing
any penalties over a faster entry which might drift over a boundary line or bump an
obstacle. Entrants were given three runs on one day and two days to prepare and
test on a track near the course; the times of the heats were determined by lottery.

Step 2: Describe the robot. The purpose of this step is to determine the
basic physical abilities of the robot and any limitations. In theory, it might
be expected that the designer would have control over the robot itself, what
it could do, what sensors it carries, etc. In practice, most roboticists work
with either a commercially available research platform which may have lim-
itations on what hardware and sensors can be added, or with relatively in-
expensive kit type of platform where weight and power restrictions may im-
pact what it can reasonably do. Therefore, the designer is usually handed
some fixed constraints on the robot platform which will impact the design.

In this case, the competition stated that the robot vehicle had to have a footprint
of at least 3ft by 3.5ft but no bigger than a golf cart. Furthermore, the robot had to
carry its own power supply and do all computing on-board (no radio communication
with an off-board processor was permitted), plus carry a 20 pound payload.

The CSM team was donated the materials for a robot platform by Omnitech Ro-
botics, Inc. Fig. 5.4 shows Omnibot. The vehicle base was a Power Wheels battery
powered children’s jeep purchased from a toy store. The base met the minimum foot-
print exactly. It used Ackerman (car-like) steering, with a drive motor powering the
wheels in the rear and a steering motor in the front. The vehicle had a 22� turning
angle. The on-board computing was handled by a 33MHz 486 PC using Omnitech
CANAMP motor controllers. The sensor suite consisted of three devices: shaft en-
coders on the drive and steer motors for dead reckoning, a video camcorder mounted
on a mast near the center of the vehicle and a panning sonar mounted below the
grille on the front. The output from the video camcorder was digitized by a black and
white framegrabber. The sonar was a Polaroid lab grade ultrasonic transducer. The
panning device could sweep 180�. All coding was done in C++.

Due to the motors and gearing, Omnibot could only go 1.5 mph. This limitation
meant that it could only win if it went farther with less penalty points than any
other entry. It also meant that the steering had to have at least a 150ms update rate
or the robot could veer out of bounds without ever perceiving it was going off course.
The black and white framegrabber eliminated the use of color. Worse yet, the update
rate of the framegrabber was almost 150ms; any vision processing algorithm would
have to be very fast or else the robot would be moving faster than it could react. The
reflections from uneven grass reduced the standard range of the sonar from 25.5 ft to
about 10 ft.

Preview from Notesale.co.uk

Page 187 of 487

5.8 End Notes 193

Documentaries.
Scientific American Frontiers did an excellent special on robot competitions called
“Robots Alive!” The special covered the AUVS Aerial Vehicle Competition (take
away lesson: try your robot outdoors before you show up at an outdoor robot com-
petition) and the 1996 AAAI Mobile Robot Competition where the robots picked up
orange tennis balls instead of coca-cola cans.

Preview from Notesale.co.uk

Page 214 of 487

198 6 Common Sensing Techniques for Reactive Robots

However, they wouldn’t necessarily be equivalent in performance or update
rate. As will be seen in this chapter, the sonar is liable to produce a noisy
percept in a second or two, while stereo vision may take minutes. Even dif-
ferent stereo vision algorithms may produce different results on the same
data stream. Therefore, the logical sensor contains a selector function which
specifies the conditions under which each alternative is useful and should be
selected.

Notice that a logical sensor can be implemented as a perceptual schema,
where the methods are the alternative means of generating the percept and
the coordinated control strategy contains the knowledge as to when a par-
ticular method is appropriate. Also note that each individual method can
be implemented as a perceptual schema, leading to the recursive, building-
block effect.

In reactive systems, the term logical sensor has degenerated somewhat
from its original usage and is essentially equivalent to a perceptual schema.
“Logical sensor” is often used to connote information hiding, where the par-
ticular sensor and processing algorithm is hidden in the “package.” This is
useful because a robot might use the same physical sensor in two different
ways. An avoid behavior might use a polar plot of sonar range data, while a
panic-stop behavior might use the minimum of all the incoming sonar data.
Since the perceptual schema use the raw sonar data differently, it is as if they
were different sensors.

6.2 Behavioral Sensor Fusion

Sensor fusion is a broad term used for any process that combines informationSENSOR FUSION

from multiple sensors into a single percept. The motivation for sensor fusion
stems from three basic combinations of sensors: redundant (or competing),REDUNDANT

complementary, and coordinated. Although many researchers treat sensor fu-COMPLEMENTARY
COORDINATED sion as a means of constructing a global world model in a hierarchical or de-

liberative system, sensor fusion can be incorporated into behaviors through
sensor fission, action-oriented sensor fusion, and sensor fashion.

In some cases multiple sensors are used when a particular sensor is too
imprecise or noisy to give reliable data. Adding a second sensor can give
another “vote” for the percept. When a sensor leads the robot to believe that
a percept is present, but it is not, the error is called a false positive. The robotFALSE POSITIVE

has made a positive identification of percept, but it was false. Likewise, an
error where the robot misses a percept is known as a false negative. SensorsFALSE NEGATIVE

Preview from Notesale.co.uk

Page 219 of 487

6.3 Designing a Sensor Suite 205

platform. The power needed to move the robot is called the locomotion load.LOCOMOTION LOAD

Unfortunately, many robot manufacturers focus on only the locomotion load,
balancing power needs with the desire to reduce the overall weight and size.
This leads to a very small hotel load, and often prevents many sensors from
being added to platform.

5. Hardware reliability. Sensors often have physical limitations on how
well they work. For example, Polaroid sonars will produce incorrect range
reading when the voltage drops below 12V. Other sensors have temperature
and moisture constraints which must be considered.

6. Size. The size and weight of a sensor does affect the overall design. A
microrover on the order of a shoebox will not have the power to transport
a large camera or camcorder, but it may be able to use a miniature “Quick-
Cam” type of camera.

The above list concentrated on considerations for the physical aspects of
the sensor. However, the sensors only provide observations; without the soft-
ware perceptual schemas, the behaviors cannot use the sensors. Therefore,
the software that will process the information from a sensor must be consid-
ered as part of the sensor seletion process. 7. Computational complexity.
Computational complexity is the estimate of how many operations an algo-
rithm or program performs. It is often written as a function O, called the
“order,” where O(x) means the number of operations is proportional to x. x
is often a function itself. Lower orders are better. An algorithm that executes
with O(n) equally consuming operations is faster than one with O(n2) oper-
ations. (If you doubt this, see if you can find a positive, whole number value
of n such that n > n2.) Computational complexity has become less critical
for larger robots, with the rapid advances in processors and miniaturization
of components. However, it remains a serious problem for smaller vehicles.

8. Interpretation reliability. The designer should consider how reliable
the sensor will be for the ecological conditions and for interpretation. The
robot will often have no way of determining when a sensor is providing
incorrect information. As a result the robot may “hallucinate” (think it is
seeing things that are not there) and do the wrong thing. Many sensors pro-
duce output which are hard for human to interpret without years of training;
medical X-rays are one example, and synthetic aperature radar (SAR) which
produces polar plots is another. If a sensor algorithm was not working prop-
erly in these modalities, the designer might not be skilled enough to notice
it. Therefore, the algorithms themselves must be reliable.

Preview from Notesale.co.uk

Page 226 of 487

218 6 Common Sensing Techniques for Reactive Robots

a.

b.

Figure 6.10 CRISbot, the Colorado School of Mines’ entry in the 1997 AAAI Mo-
bile Robot Competition Hors d’Oeuvres, Anyone? event. a.) Interacting with the
audience. b.) Audience members “communicated” by kicking the two protruding
bumpers near the bottom of the robot. (Photographs courtesy of AAAI.)

However, they are often interchangeable with IR sensors because IR sensors
often operate over the short range (inches) with less reliability.

6.6 Computer Vision

Computer vision refers to processing data from any modality which uses theCOMPUTER VISION

electromagnetic spectrum which produces an image. An image is essentiallyIMAGE

a way of representing data in a picture-like format where there is a direct
physical correspondence to the scene being imaged. Unlike sonar, which
returns a single range reading which could correspond to an object any-
where within a 30� cone, an image implies multiple readings placed in a
two-dimensional array or grid. Every element in the array maps onto a small
region of space. The elements in image arrays are called pixels, a contractionPIXELS

Preview from Notesale.co.uk

Page 239 of 487

220 6 Common Sensing Techniques for Reactive Robots

light, so the camera device can either have many frame buffers, which create
a pipeline of images (but is expensive), or have a low frame rate.

A framegrabber is a card which fits inside a computer, accepts analog cam-FRAMEGRABBER

era signals and outputs the digitized results. The card has a software driver
which allows the robot software to communicate with the board. Framegrab-
bers can produce a grayscale or a color digital image. In the early part of
the 1990’s, color-capable framegrabbers were prohibitively expensive, cost-
ing around $3,000 USD. Now color framegrabbers can be purchased from
$300 to $500 USD, and TV tuners which can capture a single frame are avail-
able for $50 USD.

6.6.2 Grayscale and color representation

The framegrabber usually expresses the grayscale value of a pixel as an 8 bit
number (1 byte of computer memory). This leads to 256 discrete values of
gray, with 0 representing black and 255 representing white. (Remember, 256
values means 0. . . 255.)

Color is represented differently. First, there are many different methods of
expressing color. Home PC printers use a subtractive method, where cyan
plus yellow make green. Most commercial devices in the U.S. use a NTSC
(television) standard. Color is expressed as the sum of three measurements:
red, green, and blue. This is simply abbreviated as RGB.RGB

RGB is usually represented as three color planes, or axes of a 3D cube asCOLOR PLANES

shown in Fig. 6.11. The cubic represents all possible colors. A specific color
is represented by a tuple of three values to be summed: (R, G, B). Black is
(0,0,0) or 0+0+0, or no measurements on any of the three color planes. White
is (255, 255, 255). The pure colors of red, green, and blue are represented
by (255,0,0), (0,255,0), and (0,0,255) respectively. This is the same as in color
graphics.

Notice that the cube dimensions in the figure are 256 by 256 by 256, where
256 is the range of integers that can be expressed with 8 bits. Since there
are three color dimensions, a manufacturer may refer to this as 24-bit color
(3 x 8), to distinguish their framegrabber from ones which map color onto a
linear grayscale. The 8-bit color model is what is used to colorize old black
and white movies. There are only 256 values of color, which is quite limited,
and the gray values are often ambiguous. The pixel values of a person’s red
lips might be 185, while their dark blue dress is also 185. A person may
have to indicate which regions in each frame of the film where 185=red and
185=dark blue. 8-bit color is not often used for robots, unless the robot will

Preview from Notesale.co.uk

Page 241 of 487

6.6 Computer Vision 221

Blue
(0,0,255)

Cyan
(0,255,255)

Magenta
(255,0,255)

Red
(255,0,0)

Black
(0,0,0)

Green
(0,255,0)

White
(255,255,255)

Yellow
(255,255,0)

Figure 6.11 RGB color cube.

be operating in an environment where the only visible colors will not have
an ambiguity.

24-bit color is usually sufficient for robotics. For other applications of com-
puter vision such as medical imaging, weather forecasting, or military re-
conaissance, an 8 bit resolution is often insufficient. Those applications may
use 10 bits for each color plane. Since 10 bits do not fall on a byte boundary,
it can be awkward to program algorithms for representing and manipulat-
ing this kind of image. Companies such as Pixar make special computers for
these applications.

In programming terms, 24-bit color image is often declared in computer
programs in two ways:

1. Interleaved. Interleaved means the colors are stored together, RGB RGB
RGB ..., and it is the more common representation. The order is almost
always red, green, then blue, although there may be framegrabbers which
do not follow that convention. Below is a code fragment where the color
is displayed for a pixel at location row, col.

#define RED 0

#define GREEN 1

#define BLUE 2

Preview from Notesale.co.uk

Page 242 of 487

6.6 Computer Vision 223

a.

b.

Figure 6.12 Images showing visual erosion of an orange landmark sticking up from
a small robot (not visible): a.) Original image and RGB segmentation and b.) original
image and degradation in RGB segmentation as robot moves farther from camera.

around the limitations of RGB. Such a device would work on the HSI (hue,HSI

saturation, intensity) representation of color. The hue is the dominant wave-HUE

length and does not change with the robot’s relative position or the object’s
shape. Saturation is the lack of whiteness in the color; red is saturated, pink isSATURATION

less saturated. The value or intensity measure is the quantity of light receivedVALUE
INTENSITY by the sensor. So HSV is a very different color scheme than RGB.

Preview from Notesale.co.uk

Page 244 of 487

234 6 Common Sensing Techniques for Reactive Robots

Figure 6.21 A stereo camera pair mounted on a pan/tilt head.

cameras are perfectly matched optically and remain in alignment. In prac-
tice, robots move, bump, and suffer alignment drifts, plus the cameras may
have some flaws in their optics. The alignment can be periodically compen-
sated for in software through a camera calibration process, where the robotCAMERA CALIBRATION

is presented with a standard and then creates a calibration look up table or
function. Fig. 6.22 shows the CMU Uranus robot calibrating its camera sys-
tem. As a result, many researchers are turning to units which package a
stereo pair in one fixed case, where the alignment cannot be altered. Fig. 6.25
shows the results using a stereo range system using three cameras in a fixed
configuration.

The first robot to use stereo vision successfully was Hans Moravec’s Stan-
ford Cart shown in Fig. 6.23a Moravec worked on the Cart while at graduate
school at Stanford between 1973 and 1980. Fig. 6.23b shows the Marsokhod
rover developed in the late 1990’s which used a stereo pair for real-time nav-
igation. Longer baselines tend to be more accurate because a slight mea-
surement error has a smaller impact, but smaller baselines have a smaller
“footprint,” in effect, take up less room. The same point in both images still
has to be identified.

Fig. 6.24 shows the simplified flow of operations in extracting range from
a pair of images. The process begins with two images, the left-right pair, and
results in a third image called the range image or the depth map. The left-rightRANGE IMAGE

DEPTH MAP pair can be grayscale or color, but the depth map is a grayscale map, where
intensity is proportional to the distance the pixel is away from the cameras.
Fig. 6.25 shows two stereo images and the resulting depth map.

Preview from Notesale.co.uk

Page 255 of 487

240 6 Common Sensing Techniques for Reactive Robots

Figure 6.28 Sick laser, covering a 180� area.

scanning component makes lidars very expensive, on the order of $30,000 to
$100,000 USD. A less expensive solution for navigation is to create a planar
laser range finder.

A lidar produces two images: intensity and range. Fig. 6.27 shows the
images produced by a Odetics laser range (LADAR) camera. The intensity
map is essentially a black and white photograph and measures the intensity
of the light reflected or absorbed by objects in the scene. This corresponds to
how humans perceive the scene The image function for the range image is
depth from the camera. Pixels that are black, or have a value of 0, are closer
than white pixels. A flat floor usually appears as a radiating set of semi-
circles going from near to far; trigonometry is then used to compute that the
circles represent a flat surface. This process is called range segmentation andRANGE SEGMENTATION

can be quite difficult.
Lidars have some problems in practice. For example, Fig. 6.27 shows an

area on the range image that is pure black or very near. But as can be seen
from the intensity image the area is actually far away. Likewise, the black
moulding between the wall and floor appear to be very far away on the range
image. The errors were due to out of range conditions, absorption of the light
(not enough light returned), or to the optical equivalent of specular reflection
(light hitting corners gets reflected away from the receiver).

A planar laser range finder, such as the Sick shown in Fig. 6.28, provides a
narrow horizontal range map. The map is essentially a high resolution polar

Preview from Notesale.co.uk

Page 261 of 487

6.8 Case Study: Hors d’Oeuvres, Anyone? 243

a. b.

c.

d.

Figure 6.30 USF robots in the “Hors d’Oeuvres, Anyone?” event. a.) Family por-
trait, where Borg Shark is on the left, Puffer Fish on the right, with b.) the thermal
sensor located as the Borg Shark’s “third eye,” c.) the SICK laser located behind the
Borg Shark’s teeth (head piece is removed for better view), and d.) a profile of Puffer
Fish’s skirt showing spatial relationship to sonar.

Preview from Notesale.co.uk

Page 264 of 487

244 6 Common Sensing Techniques for Reactive Robots

Step 1: Describe the task. The “Hors d’Oeuvres, Anyone?” event required
fully autonomous robots to circulate in the reception area at the AAAI confer-
ence with a tray of finger food, find and approach people, interact with them,
and refill the serving tray. Each robot was scored on covering the area, notic-
ing when the tray needed refilling, interacting with people naturally, having
a distinct personality, and recognizing VIPs. The USF entry used two robots,
shown in Fig. 6.30, costumed by the USF Art Department in order to attract
attention. The Borg Shark was the server robot, and navigated through au-
dience following a pre-planned route. It would stop and serve at regular
intervals or whenever a treat was removed from the tray. It used a DEC-talk
synthesizer to broadcast audio files inviting audience members to remove a
treat from its mouth, but it had no way of hearing and understanding nat-
ural language human commands. In order to interact more naturally with
people, the Borg Shark attempted to maintain eye contact with people. If it
saw a person, it estimated the location in image coordinates of where a VIP’s
colored badge might be, given the location of the face.

When the Borg Shark was almost out of food, she would call over radio
ethernet her assistant robot, Puffer Fish. Puffer Fish would be stationary in
sleep mode, inhaling and exhaling through her inflatable skirt and turning
her cameras as if avoiding people crowding her. When Puffer Fish awoke,
she would head with a full tray of food (placed on her stand by a human)
to the coordinates given to her by Borg Shark. She would also look for
Borg Shark’s distinctive blue costume, using both dead reckoning and vi-
sual search to move to goal. Once within 2 meters of Borg Shark, Puffer Fish
would stop. A human would physically swap trays, then kick the bumpers
to signal that the transfer was over. Borg Shark would resume its serving
cycle, while Puffer Fish would return to its home refill station.

Both robots were expected to avoid all obstacles: tables, chairs, people.
Since there was a tendency for people to surround the robotos, preventing
coverage of the area or refilling, the robots had different responses. Borg
Shark, who was programmed to be smarmy, would announce that it was
coming through and begin moving. Puffer Fish, with a grumpy, sullen per-
sonality, would vocally complain, then loudly inflate her skirt and make a
rapid jerk forward, usually causing spectators to back up and give her room.

Step 2: Describe the robots. The robots used for the entry were Nomad 200
bases, each with a unique sensor suite.

Preview from Notesale.co.uk

Page 265 of 487

248 6 Common Sensing Techniques for Reactive Robots

map:
evidence grid

awaiting
refill:

finding faces

serving food:
finding faces,
counting treat

removal

waypoint
navigation:

move to goal,
avoid

food
depleted

full
tray

at waypoint
OR

food removed

time limit
serving exceeded

sonars shaft
encoders

thermal

vision

laser range

sonars

thermalvision

Figure 6.31 State diagrams for the Borg Shark, annotated to show sensors being
used.

mining the temperature of a person on contact, but it was able to detect an
increase in temperature above the ambient from a person up to two meters
away.

Why wasn’t the vision system simply replaced with the thermal sensor?
This gets back to the attributes of sensors and how they fit with the environ-
ment. The thermal sensor has a 2� field of view, making it too slow to scan.
Instead, the vision system covered a much wider field of view and could gen-
erate a small list of candidate regions. Then as the camera turned to center
on the largest region, the thermal probe could decide whether this was really
a person or not.

The problem with the food-count was greatly reduced by a simple AND
function with the sonars. The system counted a treat as being removed only
if there was a close range reading in front of the tray at the same time.

Preview from Notesale.co.uk

Page 269 of 487

6.10 Exercises 251

most common color coordinate systems are RGB and HSV. HSV treats color
in absolute terms, but RGB is favored by equipment manufacturers. A color
space used in biomedical imaging, SCT, appears to be less sensitive to light-
ing conditions than RGB and RGB-derived HSV. Many reactive robots exploit
color as an affordance. This can be done by thresholding an image and iden-
tifying regions of the appropriate color. A color affordance method which
works well for objects with multiple colors is color histogramming. Stereo
range finding is an important class of algorithms for navigation, though the
computational complexity has prevented it being ported to many mobile ro-
bot applications. Laser range finders, particularly the inexpensive planar
rangers, have grown in popularity over the past few years.

Despite the diversity of sensors and affordances inherent in the environ-
ment, reactive robotics is remarkable for its lack of sophistication in sensing.
This may stem from the split between computer vision and robotics in the
formative years of the field. Many roboticists still assume algorithms de-
veloped by computer vision specialists are too computationally expensive
to work on commercially available on-board processors. This is no longer
true, in part because of the increased computational power of general pur-
pose chips. Readers are encouraged to explore the large body of literature on
computer vision and free tools on the web.

6.10 Exercises

Exercise 6.1

Define sensor suite, active/passive sensors, dead reckoning, computer vision. y

Exercise 6.2

Compare and contrast the RGB and HSV color representations specifying the advan-
tages and disadvantages of each type. y

Exercise 6.3

Ultrasonic sensors have many positive and negative attributes. Name and describe
three positive and three negative attributes. y

Exercise 6.4

What is the difference between physical and logical redundancy? y

Exercise 6.5

Describe the three major problems of ultrasonic sensing, and define a hypothetical
instance in which a robot would encounter each problem (such as a room with a
large amount of glass surfaces). y

Preview from Notesale.co.uk

Page 272 of 487

7 The Hybrid Deliberative/Reactive
Paradigm

Chapter objectives:

� Be able to describe the Hybrid Deliberative/Reactive paradigm in terms
of i) sensing, acting, and planning and ii) sensing organization.

� Name and evaluate one representative Hybrid architecture in terms of:
support for modularity, niche targetability, ease of portability to other do-
mains, robustness.

� Given a list of responsibilities, be able to say whether it belongs in the
deliberative layer or in the reactive layer.

� List the five basic components of a Hybrid architecture: sequencer agent,
resource manager, cartographer, mission planner, performance monitor-
ing and problem solving agent.

� Be able to describe the difference between managerial, state hierarchy, and
model-oriented styles of Hybrid architectures.

� Be able to describe the use of state to define behaviors and deliberative
responsibilities in state hierarchy styles of Hybrid architectures.

7.1 Overview

By the end of the 1980’s, the trend in artificially intelligent robots was to
design and program using the Reactive Paradigm. The Reactive Paradigm
allowed robots to operate in real-time using inexpensive, commercially avail-
able processors (e.g., HC6811) with no memory. But the cost of reactivity, of
course, was a system that eliminated planning or any functions which in-
volved remembering or reasoning about the global state of the robot relative

Preview from Notesale.co.uk

Page 278 of 487

7.3 Architectural Aspects 263

mines what functionality goes in what modules, what modules have access
to global knowledge (which leads to specifying public and friend classes
in C++), and what that global knowledge (shared data structures) should
be. Likewise, it is important to subdivide the deliberative portion into mod-
ules or objects. A good decomposition will ensure portability and reusabil-
ity. While Hybrid architectures are most noteworthy for how they incorpo-
rate deliberation into mobile robotics, they also introduce some changes in
the way reaction is organized. Many researchers found the two primary
means of combining reactive behaviors—subsumption and potential field
summation—to be limited. Since then at least three other mechanisms have
been introduced: voting (in the DAMN architecture), 121 fuzzy logic (Saphira), 77

and filtering (SFX).107

The number of Hybrid architectures is rapidly increasing. This section
attempts to introduce some conceptual organization on Hybrids in two ways.
First, it offers a set of common components—essentially, things to look for in
a Hybrid architecture. Second, it divides Hybrid into three broad categories:
managerial, state hierarchies, and model-oriented.

7.3.1 Common components of hybrid architectures

While Hybrid architectures vary significantly in how they implement de-
liberative functionality, what they implement is fairly similar. Generally a
Hybrid architecture has the following modules or objects:

� A Sequencer agent which generates the set of behaviors to use in order toSEQUENCER

accomplish a subtask, and determines any sequences and activation con-
ditions. The sequence is usually represented as a dependency network or
a finite state machine, but the sequencer should either generate this struc-
ture or be able to dynamically adapt it. Recall from Ch. 5 that assemblages
of reactive behavior are manually constructed.

� A Resource manager which allocates resources to behaviors, including se-RESOURCE MANAGER

lecting from libraries of schemas. For example, a robot may have stereo
vision, sonars, and IR sensors, all of which are capable of range detec-
tion. The behavioral manager would ascertain whether the IR sensors can
detect at a sufficient range, the stereo vision can update fast enough to
match the robot’s desired velocity, and the sonars have enough power to
produce reliable readings. In reactive architectures, the resources for a
behavior were often hard-coded or hardwired, despite the ability of hu-

Preview from Notesale.co.uk

Page 284 of 487

7.4 Managerial Architectures 273

slope

Strategic
Velocity

Clutter

Obstacles

How Much Vehicle Turns

Swivel Camera

Camera Direction

Safe Velocity

Direction To Path

Inclino-
meter

Camera

Sonar

Follow-Path Speed-Control

Avoid

Center-Camera

Sensors Strategic Behaviors Tactical Behaviors Actuators

Drive
Motor

Steer
Motor

Camera
Pan
Motor

Figure 7.6 Strategic and tactical behaviors for following an outdoor path, used in
the 1995 UGV Unmanned Ground Robot competition.

ensure that the robot acts in a safe manner in as close accordance with the
strategic intent as possible. The interaction of strategic and tactical behaviors
is still considered emergent behavior.

One outcome of the strategic-tactical partitioning was the discovery that
every task to date could be done with one strategic behavior and several
tactical behaviors. This means that the need to combine behaviors does not
occur often, and so the combination mechanism is not particularly important.
However, it should be emphasized that the strategic behaviors were often
assemblages in the form of scripts. There were many strategic behaviors,
but they were explicitly coordinated and controlled according to behavior-
specific knowledge.

Preview from Notesale.co.uk

Page 294 of 487

284 7 The Hybrid Deliberative/Reactive Paradigm

come by the large number of robots. The other approach, characterized by
Carnegie Mellon University’s Ambler robot, proposed a single large robot
with a higher viewpoint and stability. Ambler was built by “Red” Whitaker
at the CMU Field Robotics Institute to be able to maintain a sensor platform
at a level height by stepping over the majority of rocks, but at a tremendous
penalty in size, weight, and power. In the end, planetary rover researchers
have gravitated towards wheeled vehicles with some type of articulation to
maintain stability, such as seen with Sandia National Laboratories’ Rattler.
An extension of the Ambler design philosophy was manifested in the Dante
robots. These were built to rappel down steep canyons and volcanoes on
Mars (and Earth). Dante was able to lower itself successfully most of the way
into a volcano in Antarctica, but could not climb back out. It was dropped
while being lifted out by a helicopter, twisting its frame.

7.8 Evaluation of Hybrid Architectures

In some regards, it is difficult to evaluate Hybrid architectures individually.
Each architecture is still evolving and the deliberative component is being
expanded practically daily. Returning to the four criteria set forth in the
overview in Part I, it is interesting to evaluate the architectures as a whole.

In terms of support for modularity, each architecture is highly modular.
Most are divided into layers, which are then subdivided into modules. As
the software agent programming style for AI gains in popularity, probably
more architectures will implement deliberative modules as independent spe-
cialists. AuRA and SFX clearly exhibit an organization which lends itself to
object-oriented programming. The use of specialists also enhances the ease
of portability.

Hybrids tend to have a high degree of niche targetability. The addition of
the deliberative component allows Hybrids to be used for applications not
appropriate for purely Reactive systems. However, the partitioning between
reaction and deliberation allows the reactive portion to be used alone for
purely reactive applications.

Another attractive aspect of Hybrid architectures is that they often explic-
itly attempt to ensure robustness. In the SFX and 3T architecture, modules
within the various deliberative components attempt to monitor the perfor-
mance of the reactive behaviors and either replace or adapt the configuration
as needed.

Preview from Notesale.co.uk

Page 305 of 487

8.6 Emergent Social Behavior 305

no awareness of the goals of the other team members.
Now consider what happens when a robot ant encounters an asteroid it

can’t move. The robot stays there pushing. Eventually another robot will
come along because the asteroid is not moving. As it is attracted to the “dark
side” of the asteroid, it will come into range of the first robot. What hap-
pens? The avoid-robot behavior should be instantiated, causing the first ro-
bot to move over a bit. The second robot will also feel a repulsive force and
slow down. As the first robot moves out of the way, the angle of repulsion
changes, forcing the second robot to move sideways as well, as it continues
to move to the asteroid. Together, the interaction between the two robots
should cause them to naturally balance themselves behind the asteroid and
push together. The point is that the robots were not explicitly directed to all
work on the same NEO; they were each directed to find their own NEO, but
circumstances led them to the same one.

8.6 Emergent Social Behavior

The examples of heterogeneity, cooperation, control, and goals give some
hint of how an overall social behavior emerges from the actions of autono-
mous robots. The robot teams often are the result of extensive design efforts,
where the teams aren’t too large to interfere with each other, and are opti-
mally sized for the particular task, etc. Many researchers are exploring the
issues of what happens when the designer doesn’t have a choice about the
size of the robot population. How do social behaviors emerge in those cases?
And how can social rules or conventions be established to make the team
self-regulating and productive? This section summarizes two approaches:
creating social rules for the robots to follow, and allowing internal motiva-
tion to cause the robots to adapt their behavior to problems.

8.6.1 Societal rules

Maja Mataric has focused her research on how group dynamics might emerge
in herds of multiple agents operating under fully distributed control. She ex-
plored the impact of density and the impact of societal rules on overall team
performance.90 Each IS Robotics R2 robot was programmed with behaviors
using the Subsumption architecture. She set up a scenario where up to 20
identical robots (now known as “The Nerd Herd”) were given the same lo-
cation as a goal. The goal, however, was on the other side of a partition with
a narrow door, permitting only one robot to pass through the partition at a

Preview from Notesale.co.uk

Page 326 of 487

306 8 Multi-agents

Figure 8.4 The Nerd Herd. (Photograph courtesy of USC Interaction Laboratory.)

time. The robots were placed randomly on the same side of the partition and
started moving at the same time.

In the first set of demonstrations, the robots functioned with ignorant coex-IGNORANT

COEXISTENCE istence. The robots coexisted in a team, but did not have any knowledge of
each other. A robot treated another robot as an obstacle. Each robot had the
equivalent of a move-to-goal and an avoid-obstacle behavior. Since robots
were treated as obstacles, once the robots gathered at the opening, they spent
most of their time avoiding each other. The team as a whole made slow
progress through the door to the goal location. Worse yet, the larger the
number of robots fielded, the larger the traffic jam, and the longer to get all
the team members through.

In the second demonstration, informed coexistence, the robots were allowedINFORMED

COEXISTENCE to recognize each other and given a simple social rule governing inter-robot
interactions. In addition to move-to-goal and avoid-obstacle, a third behav-
ior was created for avoiding robots. If a robot detected another robot, it
would stop and wait for time p. If the blocking robot was still in the way
after p, the robot would turn left and then resume moving to the goal. The
result of the new behavior was to reduce the traffic jams, and the group got
through the door in about the same time as a single agent going back and
forth through the opening 20 times.

The real surprise came in the third demonstration, intelligent coexistence.INTELLIGENT

COEXISTENCE

Preview from Notesale.co.uk

Page 327 of 487

8.7 Summary 309

time Robot 1 Robot 2
0 find-stationary-asteroid find-stationary-asteroid
1 sees A1 sees A1
2 move-to-asteroid(A1) move-to-asteroid(A1)
3 arrives at A1 resumes find-stationary-asteroid
4 push-asteroid-to-home(A1) find-stationary-asteroid

T1-acquiescence++ T1-impatience++
5 push-asteroid-to-home(A1) sees A2

T1-acquiescence++ T1-impatience++
6 push-asteroid-to-home(A1) move-to-asteroid(A2)

T1-acquiescence++ T1-impatience++
7 push-asteroid-to-home(A1) push-asteroid-to-home(A2)

T1-acquiescence++ T1-impatience>limit
T2-impatience++ put T1 on stack

T2-acquiescence++
8 push-asteroid-to-home(A1) push-asteroid-to-home(A2)

T1-acquiescence++ A1-impatience++
T2-impatience++ T2-acquiescence++

9 T1-acquiescence>limit push-asteroid-to-home(A2)
gives up on T1 T2-acquiescence++
find-stationary-asteroid
T2-impatience++

10 T2-impatience>limit T2-acquiescence++
now attempts T2
move-to-asteroid(A2)

11 push-asteroid-to-home(A2) push-asteroid-to-home(A2)
T2-acquiescence = 0 T2-acquiescence = 0

12 arrives at HOME arrives at HOME

Figure 8.6 Example of how the internal motivation in ALLIANCE might be ex-
tended to work with two space ants.

8.7 Summary

In summary, many tasks favor the use of many cheap robots rather than a
single expensive one. These collections of multiple robots are often referred
to as multi-agents. Individual robots in a multi-agent team are generally
programmed with behaviors, most often as purely reactive systems, but oc-
casionally with a hybrid architecture. As with an overall behavior emerging

Preview from Notesale.co.uk

Page 330 of 487

Preview from Notesale.co.uk

Page 335 of 487

Part II 321

digm. Most of the techniques presented in Part II will go into the deliberative
component of Hybrid architectures.

One important observation is that the four questions of navigation largely
ignore an implicit fifth question: how am I going to get there? Based on Part I,
the obvious answer is “by using reactive behaviors.” But navigation is delib-
erative, and the issue of integrating deliberation and reaction for navigation
in a Hybrid architecture is still largely open. Work addressing this issue of
interleaving planning and execution is presented in Ch. 9.

Spatial Memory

The answer to what’s the best way there? depends on the representation of
the world that the robot is using. The world representation will be called
the robot’s spatial memory. 63 Spatial memory is the heart of the cartographerSPATIAL MEMORY

object class (or its equivalent) in a Hybrid architecture, as described in Ch. 7.
Spatial memory should provide methods and data structures for process-

ing and storing output from current sensory inputs. For example, suppose
a robot is directed to “go down the hall to the third red door on the right.”
Even for the coordination and control of reactive behaviors, the robot needs
to operationalize concepts such as “hall,” “red,” “door” into features to look
for with a perceptual schema. It also needs to remember how many red doors
it has gone past (and not count the same door twice!). It would also be ad-
vantageous if the robot sensed a barrier or dead-end and updated its map of
the world.

Spatial memory should also be organized to support methods which can
extract the relevant expectations about a navigational task. Suppose a robot
is directed this time to to “go down the hall to the third door on the right.”
It could consult its spatial memory and notice that odd numbered doors are
red, and even numbered are yellow. By looking for “red” and “yellow” in
addition to other perceptual features of a door, the robot can more reliably
identify doors, either by focus of attention (the robot only runs door detec-
tion on red and yellow areas, not every image) or by sensor fusion (more
sources of data means a more certain percept).

Spatial memory supports four basic functions:

1. Attention. What features, landmarks to look for next?ATTENTION

2. Reasoning. Can that surface support my weight?REASONING

3. Path planning. What is the best way through this space?PATH PLANNING

Preview from Notesale.co.uk

Page 342 of 487

328 9 Topological Path Planning

Figure 9.1 Artificial landmarks used in the 1992 AAAI Mobile Robot Competition.
(Photograph courtesy of AAAI.)

9.3 Relational Methods

Relational methods represent the world as a graph or network of nodes and
edges. Nodes represent gateways, landmarks, or goals. Edges represent
a navigable path between two nodes, in effect that two nodes have a spa-
tial relationship. Additional information may be attached to edges, such
as direction (N,S,E,W), approximate distance, terrain type, or the behaviors
needed to navigate that path. Paths can be computed between two points us-
ing standard graph algorithms, such as Dijkstra’s single source shortest path
algorithm. (See any algorithm textbook for details.)

One of the earliest investigations of relational graphs for navigation was by
Smith and Cheeseman.133 They represented the world as a relational graph,
where the edges represented the direction and distance between nodes. They

Preview from Notesale.co.uk

Page 349 of 487

9.3 Relational Methods 329

Figure 9.2 Representation of a floor plan as a relational graph.

simulated what would happen if a robot used dead-reckoning to navigate.
As would be expected from the section on proprioception in Ch. 6, they
found that the error would continually increase and soon the robot would
be unable to reach any of the nodes.

9.3.1 Distinctive places

Kuipers and Byun tied relational graphs to sensing in their seminal work
with distinctive places.81 A distinctive place is a landmark that the robot couldDISTINCTIVE PLACE

detect from a nearby region called a neighborhood. Their work was moti-
vated by research in cognitive science indicating that spatial representation
in the animal kingdom forms a multi-level hierarchy. (More recent stud-
ies suggest this hierarchy isn’t as clearly partitioned as previously thought.)
The lowest level, or most primitive way of representing space, was by iden-
tifying landmarks (doors, hallways) and the procedural knowledge to travel

Preview from Notesale.co.uk

Page 350 of 487

9.4 Associative Methods 333

rors could use multiple trips between nodes to build up a reasonable metric
map, since most of the errors would average out. Another attractive aspect
of the distinctive place approach is that it supports discovery of new land-
marks as the robot explores an unknown environment. As long as the robot
found something distinctive that it could reliably localize itself to, it could be
put on a topological map. Then as it repeatedly moved to it, the robot could
construct a metric map.

Returning to the discussion of landmarks, it should be noticed that a land-
mark must be unique to a node pair. There can’t be any corners in the real
world that are not on the graph between the nodes or else the robot will
localize itself incorrectly.

The distinctive place approach as originally formulated encountered some
problems when behavior-based roboticists began to apply it to real robots.
One of the most challenging problems was perception. Good distinctive
places are hard to come by; configurations that seemed useful to humans,
like corners, proved difficult to reliably sense and localize against. Features
that were easy to sense often were too numerous in the world, and so were
not locally unique. Another challenge was learning the local control strategy.
As the robot explored an unknown environment, it was easy to imagine that
it could find distinctive places. But how did it learn the appropriate local
control strategy? In an indoor environment, the robot might resort to always
using wall following, even though other behaviors would be better suited.
How would it ever try something different? Another open issue is the prob-
lem of indistinguishable locations. The issue of indistinguishable locations
has also been tackled to some degree by work with probablistic methods,
which will be covered in Ch. 11.

9.4 Associative Methods

Associative methods for topological navigation essentially create a behaviorASSOCIATIVE METHODS

which converts sensor observations into the direction to go to reach a partic-
ular landmark. The underlying assumption is that a location or landmark of
interest for navigation usually has two attributes:

1. perceptual stability: that views of the location that are close together shouldPERCEPTUAL STABILITY

look similar

2. perceptual distinguishability: that views far away should look different.PERCEPTUAL

DISTINGUISHABILITY

Preview from Notesale.co.uk

Page 354 of 487

342 9 Topological Path Planning

R7

R6 R5
R4

R3R2R1

H1

H2 H3 H4 H5 H6

H7

H8H20 H9 H10 H11

H12

H13

H14 H15

H16H17H18H19

F1

F2

Navigating Door
Navigating Hall

N
R7 -> R2
R7 - H1 - H2 - H5 - R2
Moving from R7 to H1, going SOUTH
In navigating door behavior

ultra looking for door towards the: SOUTH
MOVE AHEAD MOTOR ACTIVE
Found door - Initialization terminated
MOVE THROUGH DOOR MOTOR ACTIVE

Moved through door - Nominal Behavior terminated

Moving from H1 to H2, going SOUTH
In navigating hall behavior

turning towards the: SOUTH
Turned towards hall - Initialization terminated
looking for hall towards the: EAST
HALL FOLLOW MOTOR ACTIVE

Found hall - Nominal Behavior terminated

Moving from H2 to H5, going EAST
In navigating hall behavior

turning towards the: EAST
Turned towards hall - Initialization terminated
vision looking for door relative: 90 (right side)
HALL FOLLOW MOTOR ACTIVE

Found door (vision) - Nominal Behavior terminated

Moving from H5 to R2, going SOUTH
In navigating door behavior

ultra looking for door towards the: SOUTH
following wall on left (right ground truth)
WALL FOLLOW MOTOR ACTIVE
Found door - Initialization terminated
MOVE THROUGH DOOR MOTOR ACTIVE

Moved through door - Nominal Behavior terminated
Goal location reached!

Figure 9.12 Scenario for moving from R7 to R2. Shaded gateways are extraneous
and discarded by the planner.

Preview from Notesale.co.uk

Page 363 of 487

346 9 Topological Path Planning

if hall-not-found
wallfollow until find the hall

else

if not facing hall

turn to face hall

else starting in a HALL

if not facing hall

turn to face hall

case facing-hall:

//nominal activity phase

hallfollow until next gateway

The navigate-hall ANB terminates when the next expected gateway
(the next node in the path) is found. There are three behaviors which look
for gateways. hallwatch looks for the ultrasonic signature of a hall in the
expected direction; foyerwatch similarly looks for foyers, and the robot
uses vision through the confirm-door behavior to detect the landmark as-
sociated with the room. These behaviors run concurrently with the nominal
behaviors.

The navigate-foyer ANB is used to move the robot between two foy-
ers. It assumes that two foyers’ nodes connected are a connvenient repre-
sentation of a single large foyer with entries from different directions (i.e.,
multiple gateways into the foyer). The script moves the robot n feet into the
first foyer in the direction of the second foyer. This gets the robot away from
potentially confusing ultrasonic signatures. Then the task manager deter-
mines which side of the foyer to wall-follow until the next expected gateway
is detected. There is no case statement in the pseudocode since the sequence
of activities is fixed.

//step 1

move-to-goal(n, dir) in direction of next foyer

//step 2

wallfollow until next gateway is detected

9.5.3 Lessons learned

The CSM team did not place at the AAAI competition; the robot suffered a
series of hardware failures, causing both the power supply and the sonars to

Preview from Notesale.co.uk

Page 367 of 487

352 10 Metric Path Planning

landmarks in the world. Topological navigation focused on subgoals which
are gateways or locations where the robot could change its primary heading.

The terms “optimal” and “best” have serious ramifications for robotics.
In order to say a path is optimal, there is an implied comparison. As will
be seen, some metric methods are able to produce an optimal path because
they consider all possible paths between points. This can be computationally
expensive. Fortunately, some algorithms (especially one named “A*” for rea-
sons that will be discussed later) are more clever about rejecting non-optimal
paths sooner than others.

Surprisingly, an optimal path may not appear optimal to the human eye;
for example, a mathematically optimal path of a world divided into tiles or
grids may be very jagged and irregular rather than straight. The ability to
produce and compare all possible paths also assumes that the planning has
access to a pre-exisiting (or a priori) map of the world. Equally as important,
it assumes that the map is accurate and up to date. As such, metric methods
are compatible with deliberation, while qualitative methods work well with
more reactive systems. As a deliberative function, metric methods tend to
be plagued by the same sorts of difficulties that were seen in Hierarchical
systems: challenges in world representation, handling dynamic changes and
surprises, and computation complexity.

Metric path planners have two components: the representation (data struc-COMPONENTS OF

METRIC PATH

PLANNERS
ture) and the algorithm. Path planners first partition the world into a structure
amenable for path planning. They use a variety of techniques to represent
the world; no one technique is dominant, although regular grids appear to
be popular. The intent of any representation is to represent only the salient
features, or the relevant configuration of navigationally relevant objects in
the space of interest; hence the term configuration space. Path planning al-
gorithms generally work on almost any configuration space representation,
although as with any algorithm, some methods work better on certain data
structures. The algorithms fall into two broad categories: those which treat
path planning as a graph search problem, and those which treat path plan-
ning as a graphics coloring problem. Regardless of what algorithm is used,
there is always the issue in a Hybrid architecture of when to use it. This is
sometimes called the issue of interleaving reaction and planning.

Preview from Notesale.co.uk

Page 373 of 487

10.2 Configuration Space 353

Figure 10.1 Reduction of a 6DOF world space to a 2DOF configuration space.

10.2 Configuration Space

The physical space robots and obstacles exist in can be thought of as the
world space. The configuration space, or Cspace for short, is a data structureCONFIGURATION SPACE

which allows the robot to specify the position (location and orientation) of
any objects and the robot.

A good Cspace representation reduces the number of dimensions that a
planner has to contend with. Consider that it takes six dimensions (also
called degrees of freedom or DOF) to represent precisely where an object is. ADEGREES OF FREEDOM

person may specify the location of the object as a (x; y; z) coordinate in some
frame of reference. But an object is three-dimensional; it has a front and back,
top and bottom. Three more degrees are needed to represent where the front
of the chair is facing, whether it is tilted or not, or even upside down. Those
are the Euler (pronounced “Oiler”) angles, �; �;
, also known as pitch, yaw,
and roll.

Six degrees of freedom is more than is needed for a mobile ground robot in
most cases for planning a path. The z (height) coordinate can be eliminated
if every object the robot sits on the floor. However, the z coordinate will be
of interest if the robot is an aerial or underwater vehicle. Likewise, the Euler
angles may be unnecessary. Who cares which way the robot is facing if all
the robot wants to do is to plan a path around it? But the pitch of a planetary
rover or slope of an upcoming hill may be critical to a mission over rocky
terrain.

Fig. 10.1 shows a transformation of an object into Cspace. In general, met-
ric path planning algorithms for mobile robots have assumed only two DOF,
including for the robot. For path planning purposes, the robot can be mod-
eled as round so that the orientation doesn’t matter. This implicitly assumes

Preview from Notesale.co.uk

Page 374 of 487

358 10 Metric Path Planning

Figure 10.6 Regular grid.

fares. It should also be noted that the curved edges in a GVG do not matter
to graph theory or graph algorithms. It is only the length, not the physical
reality, of the edges that make any difference.

10.3.3 Regular grids

Another method of partitioning the world space is a regular grid. The regular
grid method superimposes a 2D Cartesian grid on the world space, as shown
in Fig. 10.6. If there is any object in the area contained by a grid element, that
element is marked occupied. Hence, regular grids are often referred to as
occupancy grids. Occupancy grids will be detailed in Ch. 11.

Regular grids are straightforward to apply. The center of each element
in the grid can become a node, leading to a highly connected graph. Grids
are either considered 4-connected or 8-connected, depending on whether they4-CONNECTED

NEIGHBORS

8-CONNECTED

NEIGHBORS

permit an arc to be drawn diagonally between nodes or not.
Unfortunately, regular grids are not without problems. First, they intro-

duce digitization bias, which means that if an object falls into even the smallestDIGITIZATION BIAS

portion of a grid element, the whole element is marked occupied. This leads
to wasted space and leads to very jagged objects. To reduce the wasted space,
regular grids for an indoor room are often finely grained, on the order of 4- to
6-inches square. This fine granularity means a high storage cost, and a high
number of nodes for a path planning algorithm to consider.

Preview from Notesale.co.uk

Page 379 of 487

364 10 Metric Path Planning

of how it is visualized, each node is evaluated to determine which is the
most plausible move. The above figure shows what the algorithm “sees” at
this point in the execution. The choices evaluate to:

f�(B) = g�(B) + h�(B) = 1 + 2:24 = 3:24

f�(D) = g�(D) + h�(D) = 1:4 + 1:4 = 2:8

A path going from A � D�? � E has the potential to be shorter than a
path going from A � B�? � E. So, D is the most plausible node. Notice
that A* can’t eliminate a path through B because the algorithm can’t “see” a
path that actually goes from D to E and determine if it is indeed as short as
possible.

At step 2, A* recurses (repeats the evaluation) from D, since D is the most
plausible, as shown in Fig. 10.10.

The two options from D are E and F , which are evaluated next:

f�(E) = g�(E) + h�(E) = 2:8 + 0 = 2:8

f�(F) = g�(F) + h�(F) = 2:4 + 1:0 = 3:4

Now the algorithm sees that E is the best choice among the leaves of the
search tree, including the branch through B. (If B was the best, then the
algorithm would have changed branches.) It is better than F and B. When it
goes to expand E, it notices that E is the goal, so the algorithm is complete.
The optimal path is A � D � E, and we didn’t have to explicitly consider
A � B � F � E. There are other ways to improve the procedure described
so far. f�(F) didn’t need to be computed if the algorithm looks at its choices
and sees that one of them is the goal. Any other choice has to be longer
because edges aren’t allowed to be negative, so D � F � E has to be longer
than D �E.

Another important insight is that any path between A and E has to go
through D, so the B branch of the search tree could have been pruned. Of
course, in the above example the algorithm never had an opportunity to no-
tice this becauseB was never expanded. It’s easy to imagine in a larger graph
that there might be a case where after several expansions through D, the leaf
atB in the search tree came up the most plausible. Then the algorithm would
have expanded A and seen the choices were D. Since D already occurred in
another branch, with a cheaper g�(D), the B branch could be safely pruned.

Preview from Notesale.co.uk

Page 385 of 487

370 10 Metric Path Planning

start

unmodeled
obstacle

goal

a.

b.

Figure 10.13 Layout showing unmodeled obstacle. a.) Gray line shows expected
path, long dashed line the actual path with Trulla, and short dashed line shows purely
reactive path. b.) Clementine opportunistically turning.

Computing the optimal path from every location to the goal actually helps
with reactive execution of the path. It means that if the robot can localize
itself on the a priori map, it can read the optimal subgoal for move-to-goal
on each update. If the robot has to swing wide to avoid an unmodeled obsta-
cle in Fig. 10.13, the robot automatically becomes redirected to the optimal
path without having to replan. Note how the metric path becomes a virtual
sensor, guiding the move-to-goal behavior replacing the direct sensor data.
This is a rich mechanism for the deliberative and reactive components of
Hybrid architectures to interact.

This approach eliminates subgoal obsession, since the robot can change
“optimal” paths reactively and opportunistically move to a closer waypoint.
As with most things in life, too much of a good thing is bad. At some
point though, the sheer number of unmodeled obstacles might force the ro-
bot to get trapped or wander about, changing subgoals but making no real
progress. The D* solution to this problem is to continuously update the map
and dynamically repair the A* paths affected by the changes in the map. D*
represents one extreme on the replanning scale: continuous replanning.CONTINUOUS

REPLANNING Continuous replanning has two disadvantages. First, it may be too compu-
tationally expensive to be practical for a robot with an embedded processor

Preview from Notesale.co.uk

Page 391 of 487

10.7 Summary 371

and memory limitations, such as a planetary rover. Second, continuous re-
planning is highly dependent on the sensing quality. If the robot senses an
unmodeled obstacle at time T1, it computes a new path and makes a large
course correction. If it no longer senses that obstacle at time T2 because the
first reading was a phantom from sensor noise, it will recompute another
large course correction. The result can be a robot which has a very jerky
motion and actually takes longer to reach the goal.

In the cases of path planning with embedded processors and noisy sensors,
it would be desirable to have some sort of event-driven scheme, where anEVENT-DRIVEN

REPLANNING event noticeable by the reactive system would trigger replanning. Trulla uses
the dot-product of the intended path vector and the actual path vector. When
the actual path deviates by 90� or more, the dot product of the path vector
and the actual vector the robot is following becomes 0 or negative. Therefore
the dot product acts as an affordance for triggering replanning: the robot
doesn’t have to know why it is drifting off-course, only that it has drifted
noticeably off-course.

This is very good for situations that would interfere with making progress
on the originally computed path, in effect, situations where the real world
is less amenable to reaching the intended goal. But it doesn’t handle the
situation where the real world is actually friendlier. In Fig. 10.14, an obstacle
thought to be there really isn’t. The robot could achieve a significant savings
in navigation by opportunistically going through the gap.

Such opportunism requires the robot to notice that the world is really
more favorable than originally modeled. A continuous replanner such as D*
has a distinct advantage, since it will automatically notice the change in the
world and respond appropriately, whereas Trulla will not notice the favor-
able change because it won’t lead to a path deviation. It is an open research
question whether there are affordances for noticing favorable changes in the
world that allow the robot to opportunistically optimize it path.

10.7 Summary

Metric path planning converts the world space to a configuration space, or
Cspace, representation that facilitates path planning. Cspace representations
such as generalized Voronoi diagrams exploit interesting geometric prop-
erties of the environment. These representations can then be converted to
graphs, suitable for an A* search. Since Voronoi diagrams tend to produce
sparser graphs, they work particularly well with A*. Regular grids work

Preview from Notesale.co.uk

Page 392 of 487

11.3 Bayesian 381

approach presented here. In a Bayesian approach, the sensor model gener-
ates conditional probabilities of the form P (sjH). These are then converted
to P (H js) using Bayes’ rule. Two probabilities, either from two different sen-
sors sensing at the same time or from two different times, can be fused using
Bayes’ rule.

11.3.1 Conditional probabilities

To review, a probability function scores evidence on a scale of 0 to 1 as toPROBABILITY

FUNCTION whether a particular event H (H stands for “hypothesis”) has occurred given
an experiment. In the case of updating an occupancy grid with sonar read-
ings, the experiment is sending the acoustic wave out and measuring the
time of flight, and the outcome is the range reading reporting whether the
region being sensed is Occupied or Empty.

Sonars can observe only one event: whether an element grid[i][j] is Occu-
pied or Empty. This can be written H = fH;:Hg or H = fOccupied; Emptyg.

The probability that H has really occurred is represented by P (H):

0 � P (H) � 1

An important property of probabilities is that the probability that H didn’t
happen, P (:H), is known if P (H) is known. This is expressed by:

1� P (H) = P (:H)

As a result, if P (H) is known, P (:H) can be easily computed.
Probabilities of the form P (H) or P (:H) are called unconditional probabil-UNCONDITIONAL

PROBABILITIES ities. An example of an unconditional probability is a robot programmed to
explore an area on Mars where 75% of the area is covered with rocks (obsta-
cles). The robot knows in advance (or a priori) that the next region it scans
has P (H = Occupied) = 0:75.

Unconditional probabilities are not particularly interesting because they
only provide a priori information. That information does not take into ac-
count any sensor readings, S. It is more useful to a robot to have a func-
tion that computes the probability that a region grid[i][j] is either Occupied
or Empty given a particular sensor reading s. Probabilities of this type are
called conditional probabilities. P (H js) is the probability that H has really oc-CONDITIONAL

PROBABILITIES curred given a particular sensor reading s (the “j” denotes “given”). Uncon-
ditional probabilities also have the property that P (H js) + P (:H js) = 1:0.

Preview from Notesale.co.uk

Page 402 of 487

11.3 Bayesian 383

s=6

R=10
β=15

r=3.5
α=0

Figure 11.4 Example 1: Updating an element in Region II (sonar reading of 6).

Note that unlike an element in Region I, an element in Region II can have
a probability of being empty of 1.0.

To see how these formulas would be applied, consider the example in
Fig. 11.4. The sonar has returned a range reading of 6.0 feet with a tolerance
of �0:5 feet. The Maxoccupied value is 0.98. The robot is shown on a grid,
and all elements are measured relative to it. The element of interest grid[i][j]
is shown in black, and is at a distance r = 3:5 feet and an angle of � = 0�

from the robot. In a computer program, r and � would be computed from
the distance and arctangent between the element of interest and the element
representing the origin of the sonar, but for the sake of focus, these examples
will give r and �.

The first step is to determine which region covers the element. Since 3:5 <

(6:0 � 0:5), the element is in Region II. Therefore, the correct formulas to
apply are those in Eqn. 11.2:

P (Empty) =
(R�r

R
)+(���

�
)

2 =
(10�3:5

10
)+(15�0

15
)

2 = 0:83

P (Occupied) = 1:0� P (Empty) = 1� 0:83 = 0:17

The example in Fig. 11.5 shows an element in Region I. The probability for
the element in black is computed the same way, only using the equations for
that region.

Preview from Notesale.co.uk

Page 404 of 487

11.6 Comparison of Methods 403

11.6 Comparison of Methods

Occupancy grid methods have their unique advantages and disadvantages.
Bayesian and Dempster-Shafer theory are formal theories, and other read-
ings from other sensor modalities, such as range from stereo or a laser, can be
easily fused as long as there is a sensor model. HIMM is limited to sonars but
it has significant computational advantages. As seen in Fig. 11.14, all three
produce similar occupancy grids, with a slight advantage going to Bayesian
and Dempster-Shafer grids. In practice, Bayesian and Dempster-Shafer have
fewer parameters to tune, making them more straightforward to adapt to
new environments.

11.6.1 Example computations

The similarities and differences between the three methods is best seen by
an example. The following example covers how to initialize the occupancy
grid, compute the score at a grid element for a sensor reading, update the
grid, and repeat for three different observations.

Step 1: Initialize the Occupancy Grid.
Consider a robot beginning to map a new area. The occupancy grid shown
in Fig. 11.15 covers an area of 12 units by 10 units. The grid is an array of
size 24 x 21, with 2 grid elements per unit of distance. The grid starts in
an initial unsensed state. In a Bayesian approach, each element in the grid
would be a structure P with two fields: P (Occupied) and P (Empty). The
value of each field depends on the unconditional probability that the area
represented by the grid is occupied or empty. Unless there is some prior
knowledge, the assumption is that an element has equal chances of being oc-
cupied or empty. This translates to P (Occupied) = P (Empty) = 0:5. Every
element in the grid would start with (0.5, 0.5). In a Dempster-Shafer im-
plementation, each element in the grid would be a structure Bel with three
fields: m(Occupied);m(Empty) and m(dontknow). Since the grid represents
areas that have not been sensed, the entire belief mass m is initialized as
m(dontknow) = 1:0. Every element in the grid would start with (0.0, 0.0,
1.0). Every element in a HIMM occupancy grid would be a single 8-bit inte-
ger, and would be initialized to 0.

Consider how three different sonar updates create a certainty value for a
particular grid element, grid[3][10], shown in Fig. 11.15. At time t1, the sonar

Preview from Notesale.co.uk

Page 424 of 487

406 11 Localization and Map Making

Step 2: Compute the uncertainty of the observation.
The second step is to compute the uncertainty score of an observation, re-
membering that a grid element will only have a score if it is covered by the
sonar reading. This computation can be done in a series of sub-steps. The
process begins by determining whether grid[3][10] falls in Region I or Re-
gion II, since this specifies which equations or increment to use. Region I,
Occupied, extends for s � tolerance. The test for falling in Region I is the
same for all three methods: if r satisfies s � tolerance � r � s + tolerance,
then it is in Region I. In this case, s = 9, tolerance = 0:5, and r = 9, and the
substitution results in 9� 0 � 9 � 9 + 0:5 being true. Therefore grid[3][10] is
in Region I.

At this point, the three methods diverge in computing the “score” from
the reading at t1. The next step in Bayesian methods is to compute the prob-
ability, P (sjOccupied), that the sensor s will correctly report that grid[3][10]
is Occupied if there is really something at s = 9. This is done using Eqn. 11.1:

P (sjOccupied) =
(R�r

R
) + (���

�
)

2
�Maxoccupied

=
(10�910) + (15�015)

2
� 0:98 = 0:54

P (sjEmpty) = 1:0� P (sjOccupied)

= 1:0� 0:54 = 0:46

Dempster-Shafer theory uses Eqn. 11.8, which produces essentially the
same score for the sensor reading as with the Bayesian method:

m(Occupied) =
(R�r

R
) + (���

�
)

2
�Maxoccupied

=
(10�910) + (15�015)

2
� 0:98 = 0:54

m(Empty) = 0:0

m(dontknow) = 1:00�m(Occupied)

= 1:0� 0:54 = 0:46

The HIMM score is the I term in Eqn. 11.11. Since grid[3][10] is in Region 1
of the HIMM sonar model, I = I+ = +3.

Preview from Notesale.co.uk

Page 427 of 487

410 11 Localization and Map Making

The HIMM updating scheme is simple where:

grid[3][10] = grid[3][10] + 3

= 3 + 3 = 6

At t3, the sonar returns a value of 8.5 units. The robot has moved to the
side and rotated; it is now 6.7 units from the grid element with an � of 5�.
In this case grid[3][10] is in Region II for the Bayesian and Dempster-Shafer
sonar models, and is not affected by the HIMM model at all.

The probability score for the Bayesian model is computed using Eqn. 11.2
instead of Eqn. 11.1:

P (sjEmpty) =
(R�r

R
) + (���

�
)

2

=
(10�6:710) + (15�515)

2
= 0:50

P (sjOccupied) = 1:0� P (sjEmpty) = 1:0� 0:50 = 0:50

The result happens to be an almost even probability that grid[3][10] is oc-
cupied. This probability is then substituted into Bayes rule (Eqn. 11.6) with
the previously stored probability:

P (Ojst3) =
P (st3 jO)P (Ojst0)

P (st3 jO)P (Ojst0) + P (st1 jE)P (Ejst0)

=
(0:50)(0:72)

(0:50)(0:72) + (0:50)(0:28)

= 0:72

P (Ejst3) = 1� P (Ojst3) = 0:28

The Dempster-Shafer belief function is computed using Eqn. 11.9, yielding
m(Occupied) = 0:0;m(Empty) = 0:50);m(dontknow) = 0:50). The differ-
ence between the probability and belief function is that the :Empty score
was assigned to P (sjOccupied) in the Bayesian method and to m(dontknow)

in the Dempster-Shafer. The combination is shown in Fig. 11.16c, and pro-
duces:

m(Occupied) =
(0:86)(0:5)

1:0� (0:86)(0:5)
= 0:76

Preview from Notesale.co.uk

Page 431 of 487

11.6 Comparison of Methods 411

m(dontknow) =
(0:14)(0:5)

1:0� (0:86)(0:5)
= 0:12

m(Empty) =
(0:14)(0:5)

1:0� (0:86)(0:5)
= 0:12

Since grid[3][10] is not affected by the HIMM sonar model for the reading
at t3, there is no update.

The above computations can be summarized as follows. The score for
grid[3][10] at each observation is:

sonar Bayesian Dempster-Shafer HIMM
certainty: P (sjO) P (sjE) m(O) m(E) m(dontknow)

t1 0.54 0.46 0.56 0.00 0.46 +3
t2 0.69 0.31 0.69 0.00 0.31 +3
t3 0.50 0.50 0.00 0.50 0.50 n/a

Notice the differences in the Bayesian and Dempster-Shafer scores. The
numbers are the same, but where those numbers go is quite different. At
t2, both methods score the occupancy of the grid element as 0.69. But the
Bayesian scores the emptiness as 0.31, while Dempster-Shafer doesn’t com-
mit to the area being empty; rather it can’t tell if it is empty or occupied. At
t3, there is no HIMM score because grid[3][10] is not covered by the HIMM
sonar model’s field of view.

The updated value of grid[3][10] after each observation, that is, the combi-
nation of the current score with the previous score, is:

after Bayesian Dempster-Shafer HIMM
update: P (Ojs) P (Ejs) m(O) m(E) m(dontknow)

t1 0.54 0.46 0.54 0.00 0.46 3
t2 0.72 0.28 0.86 0.00 0.14 6
t3 0.72 0.28 0.76 0.12 0.12 6

Notice that the end results of the Bayesian and Dempster-Shafer fusion
methods are very similar, though the intermediate values are different. In
the HIMM, the value of grid[3][10] after t3 is 6 because nothing is done to it
after t2; it is neither incremented nor decremented.

11.6.2 Performance

Fig. 11.14 shows the three methods used to generate occupancy grids for
data collected from the same hallway. Performance scores are easy to com-
pute. The ground truth is expressed as a “perfect” occupancy grid, manually

Preview from Notesale.co.uk

Page 432 of 487

11.6 Comparison of Methods 413

or crosstalk, obstacles might be missed or appear at the wrong distance. If
the robot is stationary, HIMM will generate high belief in an incorrect map.
Bayesian and Dempster-Shafer theory also suffer from the same defect. Since
they usually cover a larger area, the problem with gaps in walls is usually
avoided. But problems with phantom readings still cause incorrect maps.

The plots of the rate of accrual of belief show that multiple identical read-
ings will cause the robot to quickly believe that its occupancy grid is correct.
Once P (H jS) or m(H) reach 1.0, there is no revision downward. HIMM can
revise belief because it subtracts strictly based on the current reading. But
HIMM must have a new, contradictory reading to cause this to happen.

The reason Bayesian and Dempster-Shafer methods degenerate when the
robot is stationary and receives multiple, identical readings is because the
assumption that the observations are independent has been violated. If the
robot is at the same location sensing the same object, the value of reading
Stn+1 is likely to be the same as Stn . Since the robot hasn’t moved, the ob-
servations cannot be considered to be taken from two different experiments
or by two different observers. This serves as a cautionary note about making
simplifying assumptions: it is important to understand when those assump-
tions lead to counterproductive results.

11.6.4 Tuning

Fig. 11.14 shows the performance of the three updating methods for a hall-
way with significant specular reflection. All three methods show the hallway
as being wider than it really is. This would be a serious problem for naviga-
tion and obstacle avoidance. The sensor noise was not eliminated by the use
of an occupancy grid. In many cases, a large amount of sensor noise can be
eliminated by tuning the model and updating algorithms.

Therefore an important criterion for an algorithm is how easily it can be
tuned for a particular environment. For example, in environments which
provoke a high degree of specular reflection in sonars, a � < 8� is often
used to reduce the registration of noise in the occupancy grid. Why put false
readings into the grid over a large area that will take several contradictory
readings to eliminate? It can often take one or more days to tune a set of
sonars which were producing near perfect occupancy grids in a laboratory
for a new building.

Occupancy grids can be tuned for a task environment in at least three
ways. One way is to leave all the algorithms the same but concentrate on3 WAYS TO TUNE

adjusting the physical equipment. For example, the time of flight of sound

Preview from Notesale.co.uk

Page 434 of 487

11.8 Exploration 425

readings will update the occupancy grid, reducing the amount and loca-
tion of unknown areas, and creating a new goal. Hughes and Murphy105

showed that this move-to-unknown-area behavior was suitable for indoor
exploration and even localization. While the above behavior-oriented ap-
proaches are simple and easy to implement, they often are inefficient, espe-
cially when presented with two or more unexplored areas. Suppose a robot
has encountered a hallway intersection; how does it choose which area to
explore?

Two basic styles of exploration methods have emerged which rank unex-
plored areas and make rational choices: frontier-based and generalized Voronoi
graph methods. Both work well for indoor environments; it is less clear how
these work over large open spaces. Both use behaviors for navigation, but
are different in how they set the navigational goals. This section provides a
highly simplified overview of each method.

11.8.1 Frontier-based exploration

Frontier-based exploration was pioneered by Brian Yamauchi.125 The ap-
proach assumes the robot is using a Bayesian occupancy grid (a Dempster-
Shafer grid can be used as well). As shown in Fig. 11.22, when a robot enters
a new area, there is a boundary between each area that has been sensed and
is open and the area that has not been sensed. (The boundary between occu-
pied areas and unknown areas are not interesting because the robot cannot
go through the occupied area to sense what is behind it.) There are two such
boundaries in Fig. 11.22; each of these lines form a frontier that should beFRONTIER

explored.
The choice of which frontier to be explored first can be made in a variety of

ways. A simple strategy is to explore the nearest frontier first. Another is to
explore the biggest frontier first. Since the world is unknown, the robot has
no way of knowing if upon reaching a big frontier it will discover a wall just
a meter away. This means that the robot might move across a room, briefly
explore one area, then return back to almost at its starting point, explore that
area, and then go to another place, and so on. In practice, this doesn’t happen
that often with indoor environments.

The size of the frontier can be measured by the number of edge cells. Every
cell in the occupancy grid that the boundary runs through is considered an
edge. If an edge “touches” an edge in one of its eight surrounding neighbors,
the edges are connected and form the line. In order to eliminate the effects of

Preview from Notesale.co.uk

Page 446 of 487

436 12 On the Horizon

telemanipulators

planetary rovers

vision

manufacturing

1960 1970 1980 1990 2000

Industrial
Manipulators

AI Robotics

telesystems

Figure 12.1 A timeline showing forks in development of robots.

vision and robotics was Avi Kak at Purdue University. His Cybermotion ro-
bot was one of the first to navigate in hallways using vision; in this case, a
technique known as a Hough (pronounced “huff”) transform.80 In the early
1990’s, with slow hardware, the robot could go 8 to 9 meters per second.
The computer vision community went through the equivalent of a Reactive
movement, moving to approaches now called animate vision, purposive vision,ANIMATE, PURPOSIVE,

ACTIVE VISION and active vision.
Another positive influence to reunite robotics and vision has been the var-

ious DARPA and ESPIRIT projects in mobility. Both agencies have provided
funding for large-scale projects, such as fully autonomous off-road and high-
way vehicles. The size of the projects require hundreds of researchers from
many universities to collaborate, providing the opportunity to cross-fertilize
the fields.

A more cost-effective motivation to have roboticists work with vision, and
vice versa, has been the various robot competitions. The prestigious AAAI
Mobile Robot Competitions have changed the events and the rules each year
to reward researchers who use computer vision in creative ways, instead of
relying on the standard sonars. A newer event, RoboCup, mandates vision.
There is no other way to play soccer than to see the ball and the players in
real-time. The competitions have already spawned at least one commercial
product: the Cognachrome fast vision board developed by Newton Labs.
The ground and aerial robot competitions sponsored by the Association for
Unmanned Vehicle Systems also promote the integration of computer vision
with robotics, but winning those competitions still largely depends on hard-
ware, not software algorithms.

Preview from Notesale.co.uk

Page 457 of 487

Bibliography

[1] Albus, J., and Proctor, F.G., “A Reference Model Architecture for Intelligent Hybrid
Control Systems,” proceedings of the International Federation of Automatic Control,
San Francisco, CA, June 30–July 5, 1996.

[2] Allocca, J. A., and Stuart, A., Transducers: Theory and Application, Prentice-Hall, 1984.

[3] Anderson, M.O., McKay, M.D., Richardson, B.S., “Multirobot Automated Indoor
Floor Characterization Team,” proceedings of the 1996 IEEE International Confer-
ence on Robotics and Automation, Minneapolis, MN, April, 1996, pp. 1750–1753.

[4] Anderson, T.L., and Donath, M., “Animal Behavior as a Paradigm for Developing
Robot Autonomy,” Robotics and Autonomous Systems, vol. 6, 1990, pp. 145–186.

[5] Arbib, M., “Perceptual Structures and Distributed Motor Control,” Handbook of
Physiology—The Nervous System II, ed. Brooks, pp. 1449–1465, 1981.

[6] Arbib, M., “Schema Theory,” The Handbook of Brain Theory and Neural Networks,
Michael A. Arbib, ed., MIT Press, pp. 830–834.

[7] Arbib, M., and Liaw, J.-S., “Sensorimotor transformations in the worlds of frogs and
toads,” Computational Theories of Interaction and Agency, Philip Agre and Stanley J.
Rosenschein, ed., MIT Press, 1996, pp. 53–80.

[8] Arkin, R.C., “Towards Cosmopolitan Robots: Intelligent Navigation in Extended
Man-Made Environments,” COINS Technical Report 87-80, Computer and Informa-
tion Science, University of Massachusetts at Amherst, 1987.

[9] Arkin, R., personal communication, 1988.

[10] Arkin, R., Behavior-Based Robotics, MIT Press, 1998.

[11] Arkin, R., and MacKenzie, D., "Temporal Coordination of Perceptual Algorithms
for Mobile Robot Navigation," IEEE Transactions on Robotics and Automation, vol.
10, no. 3, June, 1994, pp. 276–286.

[12] Arkin, R.C. and Murphy, R.R., “Autonomous Navigation in a Manufacturing Envi-
ronment,” IEEE Transactions on Robotics and Automation, vol. 6, no. 4, August, 1990,
pp. 445–454.

Preview from Notesale.co.uk

Page 470 of 487

Bibliography 455

[92] McKenzie, D.C.; Arkin, R.C.; Cameron, J.M., “ Multiagent mission specification and
execution,” Autonomous Robots, vol.4, no.1, 1997, p. 29–52.

[93] Meystel, A., “Knowledge Based Nested Hierarchical Control,” in Advances in Au-
tomation and Robotics, vol. 2, Ed. G. Saridis, JAI Press, Greenwich, CT, 1990, pp.
63–152.

[94] Moravec, H., Mind Children, Harvard University Press, 1988.

[95] Moravec, H.P., “Sensor Fusion in Certainty Grids for Mobile Robots,” AI Magazine,
vol. 9, no. 2, Summer, 1988, pp. 61–74.

[96] Moravec, H., Robot: Mere Machine to Transcendent Mind, Oxford Press, 1998.

[97] Murphy, R.R., “A Strategy for the Fine Positioning of a Mobile Robot using Tex-
ture,” proceedings of SPIE Mobile Robots IV, Philadephia, PA, Nov. 5-10, 1989, pp.
267–279.

[98] Murphy, R. R., “An Artificial Intelligence Approach to the 1994 AUVS Unmanned
Ground Vehicle Competition,” 1995 IEEE International Conference on Systems, Man
and Cybernetics, Oct. 1995, Vancouver, BC., pp. 1723–1728.

[99] Murphy, R.R., “Biological and Cognitive Foundations of Intelligent Sensor Fusion,”
IEEE Transactions on Systems, Man, and Cybernetics, vol. 26, No. 1, Jan, 1996, pp.
42–51.

[100] Murphy, R.R, “Use of Scripts for Coordinating Perception and Action,” IROS-96,
Nov. 1996, Osaka, Japan, pp. 156–161.

[101] Murphy, R., “1997 International Ground Robotics Vehicle Competition,” Robotics
Competition Corner, Robostics and Autonomous Systems, Elsevier, vol. 20, 1997.

[102] Murphy, R., “Dempster-Shafer Theory for Sensor Fusion in Autonomous Mobile
Robots,” IEEE Transactions on Robotics and Automation, vol. 14, no. 2, April, 1998.

[103] Murphy, R.R., Gomes, K., and Hershberger, D., “Ultrasonic Data Fusion as a Func-
tion of Robot Velocity,” 1996 SPIE Sensor Fusion and Distributed Robotic Agents, Nov.
1996, Boston, MA., pp. 114–126.

[104] Murphy, R. R., Hawkins, D.K., and Schoppers, M.J., “Reactive Combination of
Belief Over Time Using Direct Perception,” IJCAI-97, Nagoya, Japan, Aug. 1997,
pp. 1353–1358.

[105] Murphy, R.R., and Hughes, K., “Ultrasonic Robot Localization using Dempster-
Shafer Theory,” SPIE Stochastic Methods in Signal Processing, Image Processing, and
Computer Vision, invited session on Applications for Vision and Robotics, San
Diego, CA, July 19-24, 1992.

[106] Murphy, R., Hughes, K., Noll, E., and Marzilli, A., “Integrating Explicit Path Plan-
ning with Reactive Control for Mobile Robots using Trulla,” Robotics and Autono-
mous Systems, no. 27, 1999, pp. 225–245.

Preview from Notesale.co.uk

Page 476 of 487

Bibliography 457

[124] Schöne, H., Spatial Orientation: The Spatial Control of Behavior in Animals and Man,
translated by C. Strausfeld, Princeton University Press, NJ, 1984.

[125] Schultz, A., Adams, W., and Yamauchi, B., “Integrating Exploration, Localization,
Navigation and Planning With a Common Representation,” Autonomous Robots,
vol. 6 no. 3, May 1999, pp. 293–308.

[126] Shafer, G., A Mathematical Theory of Evidence, Princeton University Press, 1976.

[127] Shaffer, G., Gonzalez, J., Stentz, A., “Comparison of two range-based pose estima-
tors for a mobile robot,” SPIE Mobile Robots VI, Boston, MA, USA; Nov. 1992, pp.
661–7.

[128] Sheridan, T., “Space Teleoperation Through Time Delay: Review and Prognosis,”
IEEE Transactions on Robotics and Automation, vol. 9, no. 5, Oct. 1993, pp. 592–605.

[129] Simmons, R., AI Magazine, Summer, vol. 16, no. 2, 1995, pp. 19–30.

[130] Simmons, R., Fernandez, J., Goodwin, R., Koenig, S., O’Sullivan, J., “Xavier: An
Autonomous Mobile Robot on the Web,” Robotics and Automation Society Magazine,
June, 1999.

[131] Simmons, R., Goodwin, R., Haigh, K., Koenig, S., and O’Sullivan, J., “A Layered
Architecture for Office Delivery Robots,” proceedings Autonomous Agents 97, 1997,
pp. 245–252.

[132] Slack, M., “Navigation templates: mediating qualitative guidance and quantitative
control in mobile robots,” IEEE Transactions on Systems, Man and Cybernetics, vol. 23,
no. 2, 1993, p. 452–66.

[133] Smith, R., and Cheeseman, P., “On the Representation of and Estimation of Spatial
Uncertainty,” International Journal of Robotics Research, vol. 5, 1986, pp. 56–68.

[134] “Sojourner’s ‘Smarts’ Reflect Latest in Automation,” JPL Press Release, Aug. 8,
1997.

[135] Stark, L., and Bowyer, K., Generic Object Recognition Using Form and Function, World
Scientific, 1996.

[136] Stentz, A., “The Focussed D* Algorithm for Real-Time Replanning,” proceedings
1995 International Joint Conference on Artificial Intelligence,Montreal, CA, Aug. 1995,
pp. 1652–1659.

[137] Swain, M., and Ballard, D., “Color indexing,” International Journal of Computer Vi-
sion, vol. 7, 1991, pp. 11–32.

[138] Thorpe, C.E., “Path Relaxation: Path Planning for a Mobile Robot,” 1984 Interna-
tional Conference on AI (AAAI-84), 1984, pp. 318–321.

[139] Thrun,S., Bennewitz, M., Burgard, M., Dellaert, F., Fox, D., Haehnel, C., Rosenberg,
C., Roy, N., Schulte, J., and Schulz, D., “MINERVA: A second generation mobile
tour-guide robot,” proceedings 1999 IEEE International Conference on Robotics and
Automation, vol. 3, pp. 1999–2005.

Preview from Notesale.co.uk

Page 478 of 487

Index 463

logical equivalence, 197
logical redundancy, 207
logical sensors, 197
logically redundant, 199
LOLA, 173, 174
Lorenz, K., 68, 75, 77, 83, 84, 156
low coupling, 112
Luddites, 18
Lyons, D., 91

Maes, P., 437
magnitude profile, 126
Mahadevan, S., 437
Managerial styles, 264
Marr, D., 70, 102
Marsokhod, 234, 236, 239
Marvin, mail bot, 4, 40
Marzilli, A., 374
mask, 399
Mataric, M., 10, 305, 307, 312
meadow map, 354
means-ends analysis, 44
metric navigation, 316
Meystel, A., 54
Micire, M., 256
Miller, D., 152, 274
Minerva, 258, 317, 318, 323, 349, 442
minimal spanning tree algorithm, 350
Minsky, M., 40, 152, 448
Minten, B., 256
MIROSOT, 226, 255, 294, 301, 312
Mission Planner, 54, 264
modality, 197
Model-oriented styles, 264
modularity, 11
Moravec, H., 67, 210, 234–236, 254, 380,

414, 434
Morgenthaler, G., 374
Morris, E., 152, 312
motivation, 77, 308
motor schema, 92
multi-agents, 293

Murphy, R., 91, 200, 202, 268, 395, 412,
425, 433

Myers, K., 279, 291

NASREM, 59
natural landmarks, 326
navigation templates, 145
Navigator, 54
Navlab, 64, 283
negative obstacle, 236
Neisser, U., 68, 83, 90, 91, 111
Nelson, R., 334, 335
Neptune, 380
Nerd Herd, 305, 306, 311, 313
Nested Hierarchical Controller, 54
niche targetability, 11
Noll, E., 374
Nomad, 170, 192, 199, 204, 217, 244,

249, 256, 319, 376, 419
non-active cooperation, 303
Nourbakhsh, I., 323, 422, 423, 433

occupancy grid, 378
Odetics, 239, 240, 292
Omnibot, 166, 167, 170
open loop control, 22
open world assumption, 53, 69
operator, 44
opportunistic replanning, 367
optic flow, 87, 88, 231
orientation region, 336

paradigm, 5
Parker, L., 295, 307, 312
passive sensor, 196
path planning, 321, 351
path relaxation, 356
Payton, D., 106, 107
Penrose, R., 16
percept, 157
perception, 162
perceptual distinguishability, 333
perceptual schema, 92

Preview from Notesale.co.uk

Page 484 of 487

464 Index

perceptual stability, 333
performance monitoring, 262
Performance Monitoring and Problem

Solving, 264
perpendicular field, 125
physical cooperation, 303
physical redundancy, 199, 207
Pick, A., 103
Pick, H., 103
Pilot, 54
Pioneer, 178, 180, 278, 291
pixels, 218
polar plot, 115
Polly, 241, 242
polymorphism, 438
Pomerleau, D., 64, 283
portability, 11
pose, 417
pose generation function, 418
Powell, M., 256
precision agriculture, 208
preconditions, 45
Predator, 31
predicates, 47
predictive displays, 31
primitive behavior, 158
probability function, 381
procedural cohesion, 136
proprioception, 202
PRS-lite, 279

quadtrees, 359
qualitative navigation, 316
QualNav, 336
quantitative navigation, 316, 351
Quinn, R., 71, 72

R2D2, 17
radial depth map, 241
Raibert, M., 441, 447, 448
rana computatrix, 94
range image, 234

range segmentation, 240
reactive behavior, 73
Reactive Paradigm, 8
reactive planning, 258
reactor, 260
Real-time Control System (RCS), 57
reasoning, 321
recognition, 90
reconfigurable robots, 303
rectified images, 233
redundant, 199
reflex, 126
reflexive behavior, 73
reflexive behaviors, fixed-action pat-

terns, 74
reflexive behaviors, reflexes, 74
reflexive behaviors, taxes, 74
region segmentation, 226
registration, 416
releaser, 77
resolution, 204
Resource manager, 263
Reynolds, C., 312
RGB, 220
Rhino, 258, 317, 318, 323
ROBART, 254
RoboCup, 226, 255, 294, 301–303, 311,

312, 436
Robonaut, 446
robot acquiescence, 308
robot impatience, 308
robot paradigm primitives, 5
robotic paradigms, 5
Robotics Industries Association, 19
robustness, 11
Rogue, 313
Rug Warrior, 101, 152, 155, 190
rule encoding, 113

SAGE, 323
Saphira, 258, 278–280, 290, 291, 304
saturation, 223

Preview from Notesale.co.uk

Page 485 of 487

Index 465

schema, 91
schema class, 91
schema instantiation (SI), 91
Schmitt, H., 14, 30, 38
Schultz, A., 419, 434
scripts, 156, 184
selective attention, 287
selective attraction, 141
selective availability, 209
semi-autonomous control, 33
sensing organization, 6
sensor, 28, 196
sensor fashion, 200
sensor fission, 200
Sensor fusion, 198
sensor suite, 203
sensors, complementary, 198
sensors, coordinated, 198
sensors, redundant, 198
Sequencer, 263
SFX, 202, 258, 268, 270–272, 274, 275,

282, 284, 287, 288, 290, 291, 338,
339, 341

shaft encoder, 207
Shakey, 8, 41, 42, 44, 55, 59, 62–65, 69,

110, 114, 254, 258, 278, 285, 286,
290

Shannon, information theory, 300
shape-shifting, 438
shared control, 33
Shear Majic, 18
side lobes, 211
Simmons, R., 278, 280, 282, 283, 292,

433
simulator sickness, 31
situated agent, 111
skill, 261
skills, 173, 184, 275
Skinner, B.F., 9
Slack, M., 145, 274
Smith, R., 328
snake robot, 439

social entropy, 300
societies, 293
software agents, 36
Sojourner, 15, 30, 34, 207, 208, 239, 283
Soldo, M., 214
sonar modal, 378
spatial memory, 321
specular reflection, 212, 214
Sprouse, J., 192, 255, 256
SRI, 41, 63, 277, 278, 290, 304
Stanford Cart, 110, 234, 254
Stark, L., 88–90
Start state, 175
state diagram, 174
State hierarchies, 264
state-set progression, 423
states, 175
Stein, L., 312
Stentz, A., 292, 369
stereo pair, 232
stereopsis, 231
stimulus-response, 73
Stone, P., 303
strategic, 272
Strips, 44
structural models, 88
sub-script, 185
subgoal obsession, 367
supervisory control, 33
suppression, 119
Swain, M., 228
swarm robots, 293

tactical behaviors, 272
tactile, 217
tangential field, 125
Task Control Architecture (TCA), 258,

278, 280–282, 290, 291
taskable, 115
teach pendant, 24
telemanipulator, 20
teleoperation, 28

Preview from Notesale.co.uk

Page 486 of 487

