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In the examples below, we shall illustrate some basic ideas involved in proof by induction.

ExaMpLE 1.2.1. We shall prove by induction that

n(n+1
1+2+3+...+n:% (1)

for every n € N. To do so, let p(n) denote the statement (1). Then clearly p(1) is true. Suppose now
that p(n) is true, so that

1
1+2+3+...+n:@.
Then
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so that p(n + 1) is true. It now follows from the Principle of induction (Weak form) that (1) holds for
every n € N.

ExaMpLE 1.2.2. We shall prove by induction that

12422432+ .. +n?= (n+1)(2n+1)\e ‘CO .\)\( (2)

for every n € N. To do so, let p(n) denote the stﬂeé& arly p(1) is true. Suppose now

that p(n) is true, so that
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so that p(n + 1) is true. It now follows from the Principle of induction (Weak form) that (2) holds for
every n € N.

EXAMPLE 1.2.3. We shall prove by induction that 3™ > n? for every n > 3. To do so, let p(n) denote
the statement

(n < 3)or (3" > n?).

Then clearly p(1),p(2),p(3),p(4) are all true. Suppose now that n > 3 and p(n) is true. Then 3" > n3.
It follows that (note that we are aiming for (n + 1)® = n3 4+ 3n% + 3n + 1 all the way)

3L S 33 = L2 > P+ 6n?2 =02 +3n2 4+ 302 > n® +3n% +6n
=n*+3n* +3n+3n>n*+3n*+3n+1=(n+1)>%

so that p(n + 1) is true. It now follows from the Principle of induction (Weak form) that 3" > n3 holds
for every n > 3.
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PROOF. (a) Write z = = + yi, where ,y € R. Then 2z = (x + yi)(z — yi) = 2% + y°.
(b) Write z = 2 4+ yi and w = u + vi, where z,y,u,z € R. Then zw = (zu — yv) + (zv + yu)i, so that
2wf? = (2 — yo)® + (20 + yu)? = (2% + ?)(u? +v2) = |22
The result follows on taking square roots.
(c) Note that the result is trivial if z + w = 0. Suppose now that z +w # 0. Then

Abhel el el
|z + w| |z +w| |z 4 w|
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The result follows immediately. O

REMARK. Proposition 1D(c) is known as the Triangle inequality. It can be understood easily from the
diagram below:

-

The in??@hlvs‘on notin ‘@g of the lengths of two sides of a triangle is at least the
length & the third side.

We have shown earlier that the cartesian coordinates (z,y) are very useful for adding two complex
numbers, whereas multiplication of complex numbers has a rather messy formula in cartesian coordinates.
Let us use polar coordinates instead.

Suppose that
z=r(cosf + isinb) and w = s(cos ¢ + isin @),
where r,5,0,¢ € R and r,s > 0. Then

zw = rs(cos @ +1isin @) (cos ¢ + isin @)
= rs((cos f cos ¢ — sin O sin ¢) + i(cos  sin ¢ + sin G cos ¢))
= rs(cos(0 + ¢) +isin(f + ¢)). (9)

It follows that if we represent complex numbers in polar coordinates, then multiplication of complex
numbers simply means essentially multiplying the moduli and adding the arguments. On the other
hand, it is not difficult to show that

i = 2(005(9 — @) +1isin(6 — ¢)). (10)
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To study (16), note that 1 + v/3i = 2(cos(r/3) + isin(n/3)). It follows from Proposition 1F that the
roots of (16) are given by

z = \3/§<cos (7;—1—2]:?) + isin (g—i—y;ﬂ)), where £ = 0,1, 2;

in other words,

1 1
21 = %(cosg—i—ising), Zo = %(coszr—i—isin?;r), 23 = \3/§<cos?9)7T —|—isin?!;7r).

To study (17), note that 1 — v/3i = 2(cos(57/3) + isin(57/3)). It follows from Proposition 1F that the
roots of (17) are given by

2k 2k
z= 3@(005 (597r+377> + isin (597T—|—37T>> ,  where £ =0,1,2;

in other words,

5 5 11 11 17 17
Z4 = \3f2<cos;T+isin9ﬂ> , 25 = \3/§(cosg7r+isingﬂ> , 2= %<cos97r+isin9ﬂ> .

)
1.8. Analytic Geometry tesa\e CO

In classical analytic geometry, e qﬁn of a 1 usfa, ZQ]&UOH between x and y. If
we write z = x + iy, then suca ai can be e lly ed as a relation between z and

Zz. However, 1t is 1m in mind that uatlon is usually equivalent to two real
equati real p @gi part of the complex equation gives rise to a real
equam% S that to obta@ ggglocus these two equations should be essentially the same.
We also®study some simple region8 on the complex plane.

Here, we shall restrict our discussion to three examples. The reader is advised to draw some pictures.
ExaMPLE 1.8.1. The equation of a circle can be given by
|z —¢|=r. (18)
To see this, suppose that z = x + iy and ¢ = a + ib, where z,y,a,b € R. Then
[z —c? = |(z +iy) — (a +ib)]* = |(z — a) +i(y = O)* = (x —a)® + (y — 1),

so that we have the equation (x — a)? + (y — b)? = r%. Note that the equation (18) can also be written
in the form

(z—c)(z—7¢) =1 (19)

Note also that equation (19) is in invariant under conjugation; in other words, the conjugate of (19) is
exactly the same as (19). Next, we consider the inequality |z — ¢/ < r. A similar argument as above
leads to the inequality (z — a)? + (y — b)? < 2. This represents the region on the zy-plane inside the
circle (z —a)? + (y — b)? = r2. Similarly, the inequality |z — c| > r represents the region on the zy-plane
outside the circle (z — a)? + (y — b)? =
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