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In the examples below, we shall illustrate some basic ideas involved in proof by induction.

Example 1.2.1. We shall prove by induction that

1 + 2 + 3 + . . .+ n =
n(n+ 1)

2
(1)

for every n ∈ N. To do so, let p(n) denote the statement (1). Then clearly p(1) is true. Suppose now
that p(n) is true, so that

1 + 2 + 3 + . . .+ n =
n(n+ 1)

2
.

Then

1 + 2 + 3 + . . .+ n+ (n+ 1) =
n(n+ 1)

2
+ (n+ 1) =

(n+ 1)(n+ 2)
2

,

so that p(n + 1) is true. It now follows from the Principle of induction (Weak form) that (1) holds for
every n ∈ N.

Example 1.2.2. We shall prove by induction that

12 + 22 + 32 + . . .+ n2 =
n(n+ 1)(2n+ 1)

6
(2)

for every n ∈ N. To do so, let p(n) denote the statement (2). Then clearly p(1) is true. Suppose now
that p(n) is true, so that

12 + 22 + 32 + . . .+ n2 =
n(n+ 1)(2n+ 1)

6
.

Then

12 + 22 + 32 + . . .+ n2 + (n+ 1)2 =
n(n+ 1)(2n+ 1)

6
+ (n+ 1)2 =

(n+ 1)(n(2n+ 1) + 6(n+ 1))
6

=
(n+ 1)(2n2 + 7n+ 6)

6
=

(n+ 1)(n+ 2)(2n+ 3)
6

,

so that p(n + 1) is true. It now follows from the Principle of induction (Weak form) that (2) holds for
every n ∈ N.

Example 1.2.3. We shall prove by induction that 3n > n3 for every n > 3. To do so, let p(n) denote
the statement

(n ≤ 3) or (3n > n3).

Then clearly p(1), p(2), p(3), p(4) are all true. Suppose now that n > 3 and p(n) is true. Then 3n > n3.
It follows that (note that we are aiming for (n+ 1)3 = n3 + 3n2 + 3n+ 1 all the way)

3n+1 > 3n3 = n3 + 2n3 > n3 + 6n2 = n3 + 3n2 + 3n2 > n3 + 3n2 + 6n
= n3 + 3n2 + 3n+ 3n > n3 + 3n2 + 3n+ 1 = (n+ 1)3,

so that p(n+ 1) is true. It now follows from the Principle of induction (Weak form) that 3n > n3 holds
for every n > 3.
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Proof. (a) Write z = x+ yi, where x, y ∈ R. Then zz = (x+ yi)(x− yi) = x2 + y2.

(b) Write z = x+ yi and w = u+ vi, where x, y, u, x ∈ R. Then zw = (xu− yv) + (xv + yu)i, so that

|zw|2 = (xu− yv)2 + (xv + yu)2 = (x2 + y2)(u2 + v2) = |z|2|w|2.

The result follows on taking square roots.

(c) Note that the result is trivial if z + w = 0. Suppose now that z + w 6= 0. Then

|z|+ |w|
|z + w| =

|z|
|z + w| +

|w|
|z + w| =

∣∣∣∣ z

z + w

∣∣∣∣+
∣∣∣∣ w

z + w

∣∣∣∣
≥ Re

z

z + w
+ Re

w

z + w
= Re

(
z

z + w
+

w

z + w

)
= Re1 = 1.

The result follows immediately. ©

Remark. Proposition 1D(c) is known as the Triangle inequality. It can be understood easily from the
diagram below:
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then a suitable range for θ may be π < θ < 3π/2 or −π < θ < −π/2. Once such a suitable range is
determined, the equation (8) will have a unique solution θ within this range.

Definition. Suppose that z = x + yi #= 0, where x, y ∈ R. Suppose further that the numbers r, θ ∈ R
satisfy (6) and (7), and that r > 0 and −π < θ ≤ π. Then we say that the pair (r, θ) form the polar
coordinates of z.

Remarks. (1) In view of (7), we have z = r(cos θ + i sin θ).

(2) Often, we write eiθ = cos θ + i sin θ. However, this is presupposing that we have understood the
exponential function with complex exponents.

Example 1.6.1. Suppose that z = 1 + i. Then |z| =
√

2 and arg z = π/4. Note also that

z =
√

2
(
cos

π

4
+ i sin

π

4

)
.

Try to draw the Argand diagram.

Example 1.6.2. The polar coordinates (2,−2π/3) represent the complex number

w = 2 cos
(
−2π

3

)
+ 2i sin

(
−2π

3

)
= −1− i

√
3.

Try to draw the Argand diagram.

The modulus has three very important properties that we often use.

PROPOSITION 1D.
(a) For every z ∈ C, we have |z|2 = zz.
(b) For every z, w ∈ C, we have |zw| = |z||w|.
(c) For every z, w ∈ C, we have |z + w| ≤| z| + |w|.
Proof. (a) Write z = x + yi, where x, y ∈ R. Then zz = (x + yi)(x− yi) = x2 + y2.

(b) Write z = x + yi and w = u + vi, where x, y, u, x ∈ R. Then zw = (xu− yv) + (xv + yu)i, so that

|zw|2 = (xu− yv)2 + (xv + yu)2 = (x2 + y2)(u2 + v2) = |z|2|w|2.
The result follows on taking square roots.

(c) Note that the result is trivial if z + w = 0. Suppose now that z + w #= 0. Then

|z| + |w|
|z + w| =

|z|
|z + w| +

|w|
|z + w| =

∣∣∣∣ z

z + w

∣∣∣∣ +
∣∣∣∣ w

z + w

∣∣∣∣
≥ Re

z

z + w
+ Re

w

z + w
= Re

(
z

z + w
+

w

z + w

)
= Re1 = 1.

The result follows immediately. ©
Remark. Proposition 1D(c) is known as the Triangle inequality. It can be understood easily from the
diagram below:

w

z

0

|w|
|z+w|

|z|
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length of the third side.

We have shown earlier that the cartesian coordinates (x, y) are very useful for adding two complex
numbers, whereas multiplication of complex numbers has a rather messy formula in cartesian coordinates.
Let us use polar coordinates instead.

Suppose that

z = r(cos θ + i sin θ) and w = s(cosφ+ i sinφ),

where r, s, θ, φ ∈ R and r, s > 0. Then

zw = rs(cos θ + i sin θ)(cosφ+ i sinφ)
= rs((cos θ cosφ− sin θ sinφ) + i(cos θ sinφ+ sin θ cosφ))
= rs(cos(θ + φ) + i sin(θ + φ)). (9)

It follows that if we represent complex numbers in polar coordinates, then multiplication of complex
numbers simply means essentially multiplying the moduli and adding the arguments. On the other
hand, it is not difficult to show that

z

w
=
r

s
(cos(θ − φ) + i sin(θ − φ)). (10)
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To study (16), note that 1 +
√

3i = 2(cos(π/3) + i sin(π/3)). It follows from Proposition 1F that the
roots of (16) are given by

z = 3
√

2
(

cos
(
π

9
+

2kπ
3

)
+ i sin

(
π

9
+

2kπ
3

))
, where k = 0, 1, 2;

in other words,

z1 = 3
√

2
(

cos
π

9
+ i sin

π

9

)
, z2 = 3

√
2
(

cos
7π
9

+ i sin
7π
9

)
, z3 = 3

√
2
(

cos
13π
9

+ i sin
13π
9

)
.

To study (17), note that 1 −√3i = 2(cos(5π/3) + i sin(5π/3)). It follows from Proposition 1F that the
roots of (17) are given by

z = 3
√

2
(

cos
(

5π
9

+
2kπ

3

)
+ i sin

(
5π
9

+
2kπ

3

))
, where k = 0, 1, 2;

in other words,

z4 = 3
√

2
(

cos
5π
9

+ i sin
5π
9

)
, z5 = 3

√
2
(

cos
11π
9

+ i sin
11π
9

)
, z6 = 3

√
2
(

cos
17π
9

+ i sin
17π
9

)
.

1.8. Analytic Geometry

In classical analytic geometry, we express the equation of a locus as a relation between x and y. If
we write z = x + iy, then such an equation can be equally well described as a relation between z and
z. However, it is important to bear in mind that a complex equation is usually equivalent to two real
equations, since each of the real part and the imaginary part of the complex equation gives rise to a real
equation. It follows that to obtain a genuine locus, these two equations should be essentially the same.
We also study some simple regions on the complex plane.

Here, we shall restrict our discussion to three examples. The reader is advised to draw some pictures.

Example 1.8.1. The equation of a circle can be given by

|z − c| = r. (18)

To see this, suppose that z = x+ iy and c = a+ ib, where x, y, a, b ∈ R. Then

|z − c|2 = |(x+ iy)− (a+ ib)|2 = |(x− a) + i(y − b)|2 = (x− a)2 + (y − b)2,

so that we have the equation (x− a)2 + (y − b)2 = r2. Note that the equation (18) can also be written
in the form

(z − c)(z − c) = r2. (19)

Note also that equation (19) is in invariant under conjugation; in other words, the conjugate of (19) is
exactly the same as (19). Next, we consider the inequality |z − c| < r. A similar argument as above
leads to the inequality (x − a)2 + (y − b)2 < r2. This represents the region on the xy-plane inside the
circle (x− a)2 + (y− b)2 = r2. Similarly, the inequality |z− c| > r represents the region on the xy-plane
outside the circle (x− a)2 + (y − b)2 = r2.
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