TOPIC 1

CHEMICAL EQUILIBRIUM

Concrete Production and Weathering

Chemical composition of selected admixtorice CO-UK				
Function	Compound 4	Origin		
Wate velocition	Lieosultonate	Wood/pulp byproduct		
Water reduction	Hydroxycarboxylic acids	Chemical production		
Air entrainment	Abietic and pimeric acids	Wood resins		
Air entrainment	Alkyl-aryl sulphonates	Industrial detergents		
Waterproofing	Fatty acids	Vegetable and animal fats		
Acceleration	Calcium chloride	Chemical production		
Acceleration	Calcium formate	Chemical production byproduct		
Acceleration	Triethanolamine	Chemical production		
Retardation	Borates	Borax mining		
Retardation	Magnesium salts	Chemical production		

 Accelerators or retardants: affect the speed of the hardening process.

Mathematical Relationships

• For any reaction my living reactants, R, and products, P, the channel reaction is written at equilibrium with a double arrow.

$R \rightleftharpoons P$

• Rate laws for the forward and reverse reaction can be written.

$$Rate_{for} = k_{for}[R]$$
$$Rate_{rev} = k_{rev}[P]$$

PROBLEM: Concrete Used in provide stacks has to be designed to withstand Previewsometimes additic conditions. Sulfur oxides in particular are produced in some cases, and they would establish equilibrium if they did not disperse:

 $2 \operatorname{SO}_2(g) + \operatorname{O}_2(g) \rightleftharpoons 2 \operatorname{SO}_3(g)$

Write the equilibrium expression for this reaction.

Homogeneous and Heterogeneous Equilibria

For the decomposition reaction of CaCO₃(s) forming CaO(s) and CO₂(g), the equilibrium constant only depends on the CO₂ concentration because CaCO₃ and CaO are solids.

Mathematical Manipulation of Equilibrium Constants

• When reversing a otenical reaction by switching the reactants and products, frice value of the equilibrium constant for the new reaction as the inverse of the value of the original equilibrium constant.

$$aA + bB \iff cC + dD$$

$$K = \frac{[C]_{eq}^{c}[D]_{eq}^{d}}{[A]_{eq}^{a}[B]_{eq}^{b}}$$

$$cC + dD \iff aA + bB$$

$$K' = \frac{[A]_{eq}^{a}[B]_{eq}^{b}}{[C]_{eq}^{c}[D]_{eq}^{d}}$$

$$K' = \frac{1}{K}$$

Units and the Equilibrium Constant

- The equilibrium of stant *K* is dimensionless. • The equilibrium of the standard concentration of the standard concentratio
 - A dimensionless K is required when K is used as the argument in a natural log function.

Equilibrium Concentrations

- The equilibrium of reactants and products for a chemical feaction can be predicted using the balanced chemical equation and known equilibrium constants.
 - There are three basic features for the strategy used in any equilibrium calculation.
 - Write a balanced chemical equation for the relevant equilibrium or equilibria.
 - Write the corresponding equilibrium expression or expressions.
 - Create a table of concentrations for all reacting species.

Example Problem 6:

SOLUTION:	from Notesale.co.	UK		
Preview	page 41	H ₂	I ₂	HI
•	Initial Concentration	0.050 M	0.050 M	0 M
	Change in Concentration	-x	-x	+2x
	Final Concentration	0.050 - x	0.050 - x	2x

- The final concentrations are expressed in terms of the initial concentration minus *x* for the reactants and initial concentration plus 2*x* for the products.
- Substitute the algebraic final concentration terms into the equilibrium concentration and solve for *x*.

Example Problem 6:

$[H_2] = [I_2] = 0.050 - x$
$[H_2] = [I_2] = 0.050 - 0.040$
$[H_2] = [I_2] = 0.010M$
[HI] = 2x
[HI] = 2(0.040)
[HI] = 0.080M

Effect of a Change in Temperature on Equilibrium

- Summary of the effects a temperature change will have on exothermic and endotheomic reactions at equilibrium.
 Preview Page

The effects of temperature changes on a chemical system at equilibrium depend on whether the reaction is exothermic or endothermic. Unlike concentration or pressure changes, temperature changes also alter the value of the equilibrium constant.

Type of Reaction	Type of Temperature Change	Response of System
Exothermic	T increase	More reactants formed
Exothermic	T decrease	More products formed
Endothermic	T increase	More products formed
Endothermic	T decrease	More reactants formed

Borates and Boric Acid

- Borax is usable a crassificate during polymer synthesis.
 Borax is usable a crassificate during polymer synthesis.
 Boric acid, B(OH)₃, is produced from the reaction between borax,
- $Na_2B_4O_7 \bullet 10H_2O$, and sulfuric acid.
- Borates are used in a number of industrial applications.
 - They are used to manufacture fiberglass, which is used in both insulation and textiles.
 - Borates are used to control the temperature at which glass melts, allowing melted glass to be pulled into fibers.