
Data Definition
Data Definition defines a particular data with the following characteristics.

Atomic − Definition should define a single concept.
Traceable − Definition should be able to be mapped to some data
element.
Accurate − Definition should be unambiguous.
Clear and Concise − Definition should be understandable.

Data Object
Data Object represents an object having a data.

Data Type
Data type is a way to classify various types of data such as integer, string, etc.
which determines the values that can be used with the corresponding type of
data, the type of operations that can be performed on the corresponding type
of data. There are two data types −

 Built-in Data Type
 Derived Data Type

Built-in Data Type

Those data types for which a language has built-in support are known as
Built-in Data types. For example, most of the languages provide the following
built-in data types.

 Integers
 Boolean (true, false)
 Floating (Decimal numbers)
 Character and Strings

Preview from Notesale.co.uk

Page 2 of 89

Derived Data Type

Those data types which are implementation independent as they can be
implemented in one or the other way are known as derived data types. These
data types are normally built by the combination of primary or built-in data
types and associated operations on them. For example −

 List
 Array
 Stack
 Queue

Basic Operations
The data in the data structures are processed by certain operations. The
particular data structure chosen largely depends on the frequency of the
operation that needs to be performed on the data structure.

 Traversing
 Searching
 Insertion
 Deletion
 Sorting
 Merging

Arrays

Array is a container which can hold a fix number of items and these items
should be of the same type. Most of the data structures make use of arrays to
implement their algorithms. Following are the important terms to understand
the concept of Array.

Element − Each item stored in an array is called an element.
Index − Each location of an element in an array has a numerical index,
which is used to identify the element.

Preview from Notesale.co.uk

Page 3 of 89

LA[2] = 5

LA[3] = 7

LA[4] = 8

Insertion Operation
Insert operation is to insert one or more data elements into an array. Based on
the requirement, a new element can be added at the beginning, end, or any
given index of array.
Here, we see a practical implementation of insertion operation, where we add
data at the end of the array −

Example

Following is the implementation of the above algorithm −
Live Demo

#include <stdio.h>

main() {

int LA[] = {1,3,5,7,8};

int item = 10, k = 3, n = 5;

int i = 0, j = n;

printf("The original array elements are :\n");

for(i = 0; i<n; i++) {

printf("LA[%d] = %d \n", i, LA[i]);

}

n = n + 1;

while(j >= k) {

LA[j+1] = LA[j];

j = j - 1;

}

LA[k] = item;

Preview from Notesale.co.uk

Page 6 of 89

Output

The original array elements are :

LA[0] = 1

LA[1] = 3

LA[2] = 5

LA[3] = 7

LA[4] = 8

The array elements after deletion :

LA[0] = 1

LA[1] = 3

LA[2] = 7

LA[3] = 8

Search Operation
You can perform a search for an array element based on its value or its index.

Algorithm

Consider LA is a linear array with N elements and K is a positive integer such
that K<=N. Following is the algorithm to find an element with a value of ITEM
using sequential search.

1. Start

2. Set J = 0

3. Repeat steps 4 and 5 while J < N

4. IF LA[J] is equal ITEM THEN GOTO STEP 6

5. Set J = J +1

6. PRINT J, ITEM

7. Stop

Example

Following is the implementation of the above algorithm −
Live Demo

#include <stdio.h>

void main() {

int LA[] = {1,3,5,7,8};

int item = 5, n = 5;

Preview from Notesale.co.uk

Page 9 of 89

Linked List Representation
Linked list can be visualized as a chain of nodes, where every node points to
the next node.

As per the above illustration, following are the important points to be
considered.

Linked List contains a link element called first.
Each link carries a data field(s) and a link field called next.
Each link is linked with its next link using its next link.
Last link carries a link as null to mark the end of the list.

Types of Linked List
Following are the various types of linked list.

Simple Linked List − Item navigation is forward only.
Doubly Linked List − Items can be navigated forward and backward.
Circular Linked List − Last item contains link of the first element as
next and the first element has a link to the last element as previous.

Basic Operations
Following are the basic operations supported by a list

Insertion − Adds an element at the beginning of the list.
Deletion − Deletes an element at the beginning of the list.
Display − Displays the complete list.
Search − Searches an element using the given key
Delete − Deletes an element using the given key.

Preview from Notesale.co.uk

Page 13 of 89

Reverse Operation
This operation is a thorough one. We need to make the last node to be
pointed by the head node and reverse the whole linked list.

First, we traverse to the end of the list. It should be pointing to NULL. Now, we
shall make it point to its previous node −

We have to make sure that the last node is not the last node. So we'll have
some temp node, which looks like the head node pointing to the last node.
Now, we shall make all left side nodes point to their previous nodes one by
one.

Except the node (first node) pointed by the head node, all nodes should point
to their predecessor, making them their new successor. The first node will
point to NULL.

We'll make the head node point to the new first node by using the temp node.

Preview from Notesale.co.uk

Page 16 of 89

The linked list is now reversed

Doubly Linked List

Doubly Linked List is a variation of Linked list in which navigation is possible in
both ways, either forward and backward easily as compared to Single Linked
List. Following are the important terms to understand the concept of doubly
linked list.

Link − Each link of a linked list can store a data called an element.
Next − Each link of a linked list contains a link to the next link called
Next.
Prev − Each link of a linked list contains a link to the previous link
called Prev.
LinkedList − A Linked List contains the connection link to the first link
called First and to the last link called Last.

Doubly Linked List Representation

As per the above illustration, following are the important points to be
considered.

Doubly Linked List contains a link element called first and last.
Each link carries a data field(s) and two link fields called next and prev.
Each link is linked with its next link using its next link.
Each link is linked with its previous link using its previous link.
The last link carries a link as null to mark the end of the list.

Preview from Notesale.co.uk

Page 17 of 89

Basic Operations
Following are the basic operations supported by a list.

Insertion − Adds an element at the beginning of the list.
Deletion − Deletes an element at the beginning of the list.
Insert Last − Adds an element at the end of the list.
Delete Last − Deletes an element from the end of the list.
Insert After − Adds an element after an item of the list.
Delete − Deletes an element from the list using the key.
Display forward − Displays the complete list in a forward manner.
Display backward − Displays the complete list in a backward manner.

Insertion Operation
Following code demonstrates the insertion operation at the beginning of a
doubly linked list.

Example

//insert link at the first locationvoid insertFirst(int key, int data) {

//create a link

struct node *link = (struct node*) malloc(sizeof(struct node));

link->key = key;

link->data = data;

if(isEmpty()) {

//make it the last link

last = link;

} else {

//update first prev link

head->prev = link;

Preview from Notesale.co.uk

Page 18 of 89

}

//point it to old first link

link->next = head;

//point first to new first link

head = link;}

Deletion Operation
Following code demonstrates the deletion operation at the beginning of a
doubly linked list.

Example

//delete first itemstruct node* deleteFirst() {

//save reference to first link

struct node *tempLink = head;

//if only one link

if(head->next == NULL) {

last = NULL;

} else {

head->next->prev = NULL;

}

head = head->next;

//return the deleted link

return tempLink;}

Preview from Notesale.co.uk

Page 19 of 89

dynamic resizing. Here, we are going to implement stack using arrays, which
makes it a fixed size stack implementation.

Basic Operations
Stack operations may involve initializing the stack, using it and then
de-initializing it. Apart from these basic stuffs, a stack is used for the following
two primary operations −

push() − Pushing (storing) an element on the stack.
pop() − Removing (accessing) an element from the stack.

When data is PUSHed onto stack.
To use a stack efficiently, we need to check the status of stack as well. For the
same purpose, the following functionality is added to stacks −

peek() − get the top data element of the stack, without removing it.
isFull() − check if stack is full.
isEmpty() − check if stack is empty.

At all times, we maintain a pointer to the last PUSHed data on the stack. As
this pointer always represents the top of the stack, hence named top.
The top pointer provides top value of the stack without actually removing it.
First we should learn about procedures to support stack functions −

peek()

Algorithm of peek() function −

begin procedure peek

return stack[top]

end procedure

Implementation of peek() function in C programming language −
Example

int peek() {

return stack[top];}

isfull()

Algorithm of isfull() function −

begin procedure isfull

if top equals to MAXSIZE

return true

Preview from Notesale.co.uk

Page 25 of 89

end procedure

Implementation of this algorithm in C, is very easy. See the following code −
Example

void push(int data) {

if(!isFull()) {

top = top + 1;

stack[top] = data;

} else {

printf("Could not insert data, Stack is full.\n");

}}

Pop Operation
Accessing the content while removing it from the stack, is known as a Pop
Operation. In an array implementation of pop() operation, the data element is
not actually removed, instead top is decremented to a lower position in the
stack to point to the next value. But in linked-list implementation, pop()
actually removes data element and deallocates memory space.
A Pop operation may involve the following steps −

Step 1 − Checks if the stack is empty.
Step 2 − If the stack is empty, produces an error and exit.
Step 3 − If the stack is not empty, accesses the data element at
which top is pointing.
Step 4 − Decreases the value of top by 1.
Step 5 − Returns success.

Preview from Notesale.co.uk

Page 28 of 89

Sr.No. Operator Precedence Associativity

1 Exponentiation ^ Highest Right Associative

2 Multiplication (∗) & Division (/) Second Highest Left Associative

3 Addition (+) & Subtraction (−) Lowest Left Associative

The above table shows the default behavior of operators. At any point of time
in expression evaluation, the order can be altered by using parenthesis. For
example −
In a + b*c, the expression part b*c will be evaluated first, with multiplication as
precedence over addition. We here use parenthesis for a + b to be evaluated
first, like (a + b)*c.

Postfix Evaluation Algorithm
We shall now look at the algorithm on how to evaluate postfix notation −

Step 1 − scan the expression from left to right

Step 2 − if it is an operand push it to stack

Step 3 − if it is an operator pull operand from stack and perform operation

Step 4 − store the output of step 3, back to stack

Step 5 − scan the expression until all operands are consumed

Step 6 − pop the stack and perform operation

Queue

Queue is an abstract data structure, somewhat similar to Stacks. Unlike
stacks, a queue is open at both its ends. One end is always used to insert
data (enqueue) and the other is used to remove data (dequeue). Queue
follows First-In-First-Out methodology, i.e., the data item stored first will be
accessed first.

Preview from Notesale.co.uk

Page 32 of 89

while(hashArray[hashIndex] != NULL && hashArray[hashIndex]->key !=

-1) {

//go to next cell

++hashIndex;

//wrap around the table

hashIndex %= SIZE;

}

hashArray[hashIndex] = item; }

Delete Operation
Whenever an element is to be deleted, compute the hash code of the key
passed and locate the index using that hash code as an index in the array.
Use linear probing to get the element ahead if an element is not found at the
computed hash code. When found, store a dummy item there to keep the
performance of the hash table intact.

Example

struct DataItem* delete(struct DataItem* item) {

int key = item->key;

//get the hash

int hashIndex = hashCode(key);

//move in array until an empty

while(hashArray[hashIndex] !=NULL) {

if(hashArray[hashIndex]->key == key) {

struct DataItem* temp = hashArray[hashIndex];

//assign a dummy item at deleted position

hashArray[hashIndex] = dummyItem;

return temp;

}

Preview from Notesale.co.uk

Page 49 of 89

Important Terms
Some terms are generally coined while discussing sorting techniques, here is
a brief introduction to them −

Increasing Order

A sequence of values is said to be in increasing order, if the successive
element is greater than the previous one. For example, 1, 3, 4, 6, 8, 9 are in
increasing order, as every next element is greater than the previous element.

Decreasing Order

A sequence of values is said to be in decreasing order, if the successive
element is less than the current one. For example, 9, 8, 6, 4, 3, 1 are in
decreasing order, as every next element is less than the previous element.

Non-Increasing Order

A sequence of values is said to be in non-increasing order, if the successive
element is less than or equal to its previous element in the sequence. This
order occurs when the sequence contains duplicate values. For example, 9, 8,
6, 3, 3, 1 are in non-increasing order, as every next element is less than or
equal to (in case of 3) but not greater than any previous element.

Non-Decreasing Order

A sequence of values is said to be in non-decreasing order, if the
successive element is greater than or equal to its previous element in the
sequence. This order occurs when the sequence contains duplicate values.
For example, 1, 3, 3, 6, 8, 9 are in non-decreasing order, as every next
element is greater than or equal to (in case of 3) but not less than the previous
one.

Preview from Notesale.co.uk

Page 52 of 89

