Data Definition

Data Definition defines a particular data with the following characteristics.
Atomic — Definition should define a single concept.

Traceable - Definition should be able to be mapped to some data
element.

Accurate - Definition should be unambiguous.

Clear and Concise - Definition should be understandabile.

Data Object

Data Object represents an object having a data.

Data Type

Data type is a way to classify various types of data such as mtege ?3:?‘]\&
which determines the values that can be used with the @ ype of
data, the type of operations that can be performega respondlng type

of data. There are two data types - NO

« Built-in Data Typt(o 2

o Deriv w
Bat‘inegdt\a Type P a-ge

Those data types for which a language has built-in support are known as
Built-in Data types. For example, most of the languages provide the following
built-in data types.

e Integers

o Boolean (true, false)

e Floating (Decimal numbers)
e Character and Strings



Derived Data Type

Those data types which are implementation independent as they can be
implemented in one or the other way are known as derived data types. These
data types are normally built by the combination of primary or built-in data
types and associated operations on them. For example -

o List

e Array
o Stack
e Queue

Basic Operations

The data in the data structures are processed by certain operation We
particular data structure chosen largely depends on the fr cd e
operation that needs to be performed on the data strucl\r 8 *

ores2
of 82

« Traversing

e Searching m N
. Insert.ion \N "(O
? ortingAe P age 3

e Merging

Arrays

Array is a container which can hold a fix number of items and these items
should be of the same type. Most of the data structures make use of arrays to

implement their algorithms. Following are the important terms to understand
the concept of Array.

Element — Each item stored in an array is called an element.

Index — Each location of an element in an array has a numerical index,
which is used to identify the element.



LA[2] = 5
LA[3] =7
LA[4] = 8

Insertion Operation

Insert operation is to insert one or more data elements into an array. Based on
the requirement, a new element can be added at the beginning, end, or any
given index of array.

Here, we see a practical implementation of insertion operation, where we add
data at the end of the array -

Example

Following is the implementation of the above algorithm -

#include <stdio.h>

main) { B\

int LA[] = {1,3,5,7,8%;
int item = 10, k = 3, n = 5; e
néitem = o\
nti=0,J=n N

\N “Om O‘ 39

ﬁ:’(@ﬂe\g\qma( o?a@\ats are \n");

for(i = O; i<n; i++) {

printf("LA[%d] = %d \n", i, LA[);

n=n+1;
while( j >= k) {

LA[j+2] = LA[JT;
Jj=i-%

LALK] = item;




Output

The original arvay elements are :

LA[O] = 1
LA[1] = 3
LA[2] = 5
LA[3] = 7
LA[4] = 8
The array elements after deletion :
LA[O] = 1
LA[1] = 3
LA[2] = 7
LA[3] = 8

Search Operation

You can perform a search for an array element based on its value or |U%
Algorithm 59-\

Consider LA is a linear array with e?& nd K positive integer such
that K<=N. Following |s find a with a value of ITEM

using sequenil (@)
e 9

pre) ‘?ag

3. Repeat steps 4 and 5 while J < N

4. IF LA[J] is equal ITEM THEN GOTO STEP &
5 .Setd=J+1

6. PRINT J, ITEM

7. Stop

Example

Following is the implementation of the above algorithm -

#include <stdio.h>

void main() {
int LA[] = {1,3,5,7,8%;
int item = 5, n = 5;




Linked List Representation

Linked list can be visualized as a chain of nodes, where every node points to
the next node.

Head Mext Mext MNext
» Data ltems , Data ltems - Data ltems
NULL

As per the above illustration, following are the important points to be
considered.

Linked List contains a link element called first.
Each link carries a data field(s) and a link field called next.
Each link is linked with its next link using its next link.

Last link carries a link as null to mark the end of the list.

inked Li \e.CO K
Types of Linked List esa_

Following are the various typ k&g

Simple L' em na ﬁward only.

)x i ked gec e nawgated forward and backward.
as

Circular L|nked t item contains link of the first element as
next and the first element has a link to the last element as previous.

Basic Operations

Following are the basic operations supported by a list
Insertion — Adds an element at the beginning of the list.
Deletion — Deletes an element at the beginning of the list.
Display — Displays the complete list.
Search — Searches an element using the given key

Delete — Deletes an element using the given key.



Head Mext Mext

. Data ltems Wil Dataitems

MULL

Reverse Operation

This operation is a thorough one. We need to make the last node to be
pointed by the head node and reverse the whole linked list.

Head Mext Mext
s Data ltems | Dataltems

MULL

First, we traverse to the end of the list. It should be pointing to NULL. Now, we
shall make it point to its previous node -

Head Mext u\(

» Datatems _______,, Data ltems

We have to make sureﬂl@x@ node is 1‘32 node So we'll have
some temp no% OKsS like t @ pointing to the last node.
Nr% %/WI\ all left &Q@d Int to their previous nodes one by

Head Meaxt Mext
» Dataltems Data ltems
NULL

Except the node (first node) pointed by the head node, all nodes should point
to their predecessor, making them their new successor. The first node will
point to NULL.

HEEJ Mext NEIED
. Data ltems Data tems

ﬁ(‘k/w

MULL

We'll make the head node point to the new first node by using the temp node.



Mext Mext Head
Data Items Data ltems -

e —-

NULL
The linked list is now reversed

Doubly Linked List

Doubly Linked List is a variation of Linked list in which navigation is possible in
both ways, either forward and backward easily as compared to Single Linked
List. Following are the important terms to understand the concept of doubly
linked list.

Link — Each link of a linked list can store a data called an element.

Next — Each link of a linked list contains a link to the next link \alkled

Next.
Prev — Each link of a linked list contains a Ilr‘e tl@g\ﬁous link
called Prev. ’

L|nkedL|st - A Linked Llst co &Qonrg@n link to the first link

&{:@\Ui\@w éﬁ:@g&:‘\tatlon

NULL
Head L - Next)|, - Mextil, L. Mext
5 Prev = Prev =——"1| Prev

As per the above illustration, following are the important points to be
considered.

Doubly Linked List contains a link element called first and last.

Each link carries a data field(s) and two link fields called next and prev.
Each link is linked with its next link using its next link.

Each link is linked with its previous link using its previous link.

The last link carries a link as null to mark the end of the list.

MULL



Basic Operations

Following are the basic operations supported by a list.
Insertion — Adds an element at the beginning of the list.
Deletion — Deletes an element at the beginning of the list.
Insert Last - Adds an element at the end of the list.
Delete Last - Deletes an element from the end of the list.
Insert After - Adds an element after an item of the list.
Delete — Deletes an element from the list using the key.
Display forward - Displays the complete list in a forward manner.

Display backward — Displays the complete list in a backward manner.

B\

Insertion Operation \e cO-

Following code demonstrates t m&@&‘beratl q the beginning of a
doubly linked list. _‘( O‘T\ % O

EEteN e pag®

//insert link at the Flrst locationvoid insertFirst(int key, int data) {

//create a link

struct node *link = (struct node*) malloc(sizeof(struct node));
link->key = key;

link->data = data;

if(isEmpty()) {
//wmake it the last link
last = link;

1 else {
//update first prev link
head ->prev = link;




//point it to old first link
link->next = head;

//point first to new first link
head = link;}

Deletion Operation

Following code demonstrates the deletion operation at the beginning of a
doubly linked list.

Example

//delete first itemstruct node” deleteFirst() {

//save reference to first link CO ‘U\(

struct node *templink = head;

//if only one link NO
if(head - >m>§\1\p(i )9 ,Lg 0" %9
Rlse { P ag

head ->next->prev = NULL;

head = head ->next;

//return the deleted link
return templLink;}




dynamic resizing. Here, we are going to implement stack using arrays, which
makes it a fixed size stack implementation.

Basic Operations

Stack operations may involve initializing the stack, using it and then
de-initializing it. Apart from these basic stuffs, a stack is used for the following
two primary operations -

push() — Pushing (storing) an element on the stack.
pop() - Removing (accessing) an element from the stack.
When data is PUSHed onto stack.

To use a stack efficiently, we need to check the status of stack as well. For the
same purpose, the following functionality is added to stacks -

peek() — get the top data element of the stack, without removing it.
isFull() — check if stack is full.
isEmpty() — check if stack is empty.

At all times, we maintain a pointer to the last PUSHed data on the stack. As
this pointer always represents the top of the stack, hence nan\u\ep
The top pointer provides top value of the stack without actuallg

First we should learn about procedures to supportéa&\@ch S -
o™ NO £ 89
Algorlthm "o‘: 26 0

éige peek g

retu m stack[top]

peek()

end procedure
Implementation of peek() function in C programming language -

Example

int peek() {
return stack[top];}

isfull()

Algorithm of isfull() function -

begin procedure isfull

if top equals to MAXSIZE

return true




end procedure

Implementation of this algorithm in C, is very easy. See the following code -
Example

void push(int data) {
if(!isFull()) {
top = top + 1;
stack[top] = data;
1 else {
printf("Could not insert data, Stack is full\n");
1

Pop Operation \)K
Accessing the content while removing it from the_s @ kaQ as a Pop
Operation. In an array implementation Qf poy , the data element is
not actually removed, instead top,_is »ao@ ernted t ower position in the
stack to point to the m&\ But in link -I% plementation, pop()
actually remoyes W eﬁex and d?zlr%t mory space.
Aﬁafe?q’imay in?vﬁ?@o g steps -

Step 1 — Checkaif thie Stack is empty.

Step 2 - If the stack is empty, produces an error and exit.

Step 3 - If the stack is not empty, accesses the data element at
which top is pointing.

Step 4 - Decreases the value of top by 1.

Step 5 — Returns success.




Sr.No. Operator Precedence Associativity

1 Exponentiation # Highest Right Associative
2 Multiplication ( * ) & Division (/) Second Highest Left Associative
3 Addition ( + ) & Subtraction (- ) Lowest Left Associative

The above table shows the default behavior of operators. At any point of time
in expression evaluation, the order can be altered by using parenthesis. For
example -

In a + b*c, the expression part b*c will be evaluated first, with multiplication as
precedence over addition. We here use parenthesis for a + b to be evaluated
first, like (a + b)*c.

Postfix Evaluation Algorithm

We shall now look at the algorithm on how to evaluate postfix notation —

Step 1 - scan the expression from left to right \(
Step 2 - if it is an operand push it to stack O u
Step 3 - if it is an operator pull operand Frﬁg%@)geﬁorw\ operation
Step 4 - store the output of ste

‘f)a(( 0 asuwxed

Step 5 - scan the ex
Step 6 é\q‘@ k and pg tion

Queue

Queue is an abstract data structure, somewhat similar to Stacks. Unlike
stacks, a queue is open at both its ends. One end is always used to insert
data (enqueue) and the other is used to remove data (dequeue). Queue
follows First-In-First-Out methodology, i.e., the data item stored first will be
accessed first.

LAST IN ; FIRST IN
LAST OUT FIRST OUT




while(hashArray[hashindex] '= NULL && hashArray[hashindex]->key !=
-1) {
//go to next cell
++hashindex;

//wrap around the table
hashindex 7%= SIZE;

hashArvay[hashindex] = item; }

Delete Operation

Whenever an element is to be deleted, compute the hash code of the key
passed and locate the index using that hash code as an index in the array.
Use linear probing to get the element ahead if an element is not found at the
computed hash code. When found, store a dummy item there to ke he
performance of the hash table intact. CO e‘d

a\e-

Example

LAY oS 9
struct Dataltem*™ deletg stig altem* z'te {8
int key = r‘eeﬂ\'zgxﬁg e A_ W‘
pad

?/get the hash
int hashindex = hashCode(key);

//wove in arvay until an empty
while(hashArray[hashindex] '=NULL) {

if(hashArray[hashindex]->key == key) {
struct Dataltem* temp = hashArvray[hashindex];

//assign a dummy item at deleted position
hashArray[hashindex] = dummyltem;
return temp;




Important Terms

Some terms are generally coined while discussing sorting techniques, here is
a brief introduction to them -

Increasing Order
A sequence of values is said to be in increasing order, if the successive

element is greater than the previous one. For example, 1, 3, 4, 6, 8, 9 are in
increasing order, as every next element is greater than the previous element.

Decreasing Order
A sequence of values is said to be in decreasing order, if the successive

element is less than the current one. For example, 9, 8, 6, 4, 3, 1 are in
decreasing order, as every next element is less than the previous element.

Non-Increasing Order

A sequence of values is said to be in non-increasing order, |¢§q&‘)§s{ve

element is less than or equal to its previous eleme ence. This
order occurs when the sequence contalns d s. For example, 9, 8,
6, 3, 3, 1 are in non- mcreasmg orde next element is less than or
equal to (in case of 3) b“f@ an any(sf %@ement.

Non- Déa{ﬁaﬁyOrder

Eequence of value is sald to be in non-decreasing order, if the
successive element is greater than or equal to its previous element in the
sequence. This order occurs when the sequence contains duplicate values.
For example, 1, 3, 3, 6, 8, 9 are in non-decreasing order, as every next
element is greater than or equal to (in case of 3) but not less than the previous
one.



