
12
C Programming

Comments

• The addition of comments inside programs is desirable. These may be added to
C programs by enclosing them as follows,

/*

Computational Kernel: In this section of code we implement the
Runge-Kutta algorithm for the numerical solution of the
differential Einstein Equations.

*/

• Note that the /* opens the comment field and the */ closes the comment
field. Comments may span multiple lines. Comments may not be nested one
inside the another.

/* this is a comment. /* this comment is inside */ wrong */

• In the above example, the first occurrence of */ closes the comment
statement for the entire line, meaning that the text wrong is interpreted as a C
statement or variable, and in this example, generates an error.

Preview from Notesale.co.uk

Page 12 of 188

14
C Programming

Symbolic Constants

• Names given to values that cannot be changed. Implemented with the
#define preprocessor directive.

#define N 3000
#define FALSE 0
#define PI 3.14159
#define FIGURE "triangle"

• Note that preprocessor statements begin with a # symbol, and are NOT
terminated by a semicolon. Traditionally, preprocessor statements are listed at
the beginning of the source file.

• Preprocessor statements are handled by the compiler (or preprocessor) before
the program is actually compiled. All # statements are processed first, and the
symbols (like N) which occur in the C program are replaced by their value
(like 3000). Once this substitution has taken place by the preprocessor, the
program is then compiled.

• In general, preprocessor constants are written in UPPERCASE. This acts as a
form of internal documentation to enhance program readability and reuse.

• In the program itself, values cannot be assigned to symbolic constants.

Preview from Notesale.co.uk

Page 14 of 188

18
C Programming

Declaring Variables

• A variable is a named memory location in which data of a certain type can be
stored. The contents of a variable can change, thus the name. User defined
variables must be declared before they can be used in a program. It is during
the declaration phase that the actual memory for the variable is reserved. All
variables in C must be declared before use.

• Get into the habit of declaring variables using lowercase characters.
Remember that C is case sensitive, so even though the two variables listed
below have the same name, they are considered different variables in C.

sum Sum

• The declaration of variables is done after the opening brace of main().
main() {

int sum;

• It is possible to declare variables elsewhere in a program, but lets start simply
and then get into variations later on.

Preview from Notesale.co.uk

Page 18 of 188

19
C Programming

Basic Format

• The basic format for declaring variables is

data_type var, var, …;

• where data_type is one of the four basic types, an integer, character, float,
or double type. Examples are

int i,j,k;

float length,height;

char midinit;

Preview from Notesale.co.uk

Page 19 of 188

20
C Programming

Basic Data Types: INTEGER

• INTEGER: These are whole numbers, both positive and negative. Unsigned
integers(positive values only) are also supported. In addition, there are short
and long integers. These specialized integer types will be discussed later.

• The keyword used to define integers is

int

• An example of an integer value is 32. An example of declaring an integer
variable called age is

int age;

Preview from Notesale.co.uk

Page 20 of 188

32
C Programming

Advanced Assignment Operators

• A further example of C shorthand are operators which combine an arithmetic
operation and a assignment together in one form. For example, the following
statement

k=k+5; can be written as k += 5;

• The general syntax is
variable = variable op expression;

• can alternatively be written as
variable op= expression;

• common forms are:
+= -= *= /= %=

• Examples:
j=j*(3+x); j *= 3+x;

a=a/(s-5); a /= s-5;

Preview from Notesale.co.uk

Page 32 of 188

39
C Programming

Automatic Type Conversion

• How does C evaluate and type expressions that contain a mixture of different
data types? For example, if x is a double and i an integer, what is the type of
the expression

x+i

• In this case, i will be converted to type double and the expression will
evaluate as a double. NOTE: the value of i stored in memory is unchanged.
A temporary copy of i is converted to a double and used in the expression
evaluation.

• This automatic conversion takes place in two steps. First, all floats are
converted to double and all characters and shorts are converted to ints. In the
second step “lower” types are promoted to “higher” types. The expression
itself will have the type of its highest operand. The type hierarchy is as
follows

long double
double
unsigned long
long
unsigned
int

Preview from Notesale.co.uk

Page 39 of 188

45
C Programming

Format Specifiers Table

• The following table show what format specifiers should be used with what
data types:

Specifier Type
%c character
%d decimal integer
%o octal integer (leading 0)
%x hexadecimal integer (leading 0x)
%u unsigned decimal integer
%ld long int
%f floating point
%lf double or long double
%e exponential floating point
%s character string

Preview from Notesale.co.uk

Page 45 of 188

47
C Programming

Basic Output Examples

printf(“ABC”); ABC (cursor after the C)
printf(“%d\n”,5); 5 (cursor at start of next line)
printf(“%c %c %c”,’A’,’B’,’C’); A B C

printf(“From sea ”);
printf(“to shining “);
printf (“C”);

From sea to shining C

printf(“From sea \n”);
printf(“to shining \n“);
printf (“C”);

From sea
to shining
C

leg1=200.3; leg2=357.4;
printf(“It was %f
miles”,leg1+leg2);

It was 557.700012 miles

num1=10; num2=33;
printf(“%d\t%d\n”,num1,num2); 10 33
big=11e+23;
printf(“%e \n”,big); 1.100000e+24
printf(“%c \n”,’?’); ?

printf(“%d \n”,’?’); 63

printf(“\007 That was a beep\n”); try it yourself

Preview from Notesale.co.uk

Page 47 of 188

55
C Programming

for Loop Example

• Sample Loop:

• We can trace the execution of the sample loop as follows

sum = 10;
for (i=0; i<6; ++i)

sum=sum+i;

Iteration i i<6 sum
1st 0 TRUE 10
2nd 1 TRUE 11
3rd 2 TRUE 13
4th 3 TRUE 16
5th 4 TRUE 20
6th 5 TRUE 25
7th 6 FALSE 25

Preview from Notesale.co.uk

Page 55 of 188

59
C Programming

while Loop

• The while loop provides a mechanism for repeating C statements while a
condition is true. Its format is

while(control expression)
program statement;

• The while statement works as follows:

1) Control expression is evaluated (“entry condition”)
2) If it is FALSE, skip over the loop.
3) If it is TRUE, loop body is executed.
4) Go back to step 1

Preview from Notesale.co.uk

Page 59 of 188

62
C Programming

do while Loop Example

• Here is a sample program that reverses an integer with a do while loop:

main() {
int value, r_digit;
printf("Enter the number to be reversed.\n");
scanf("%d", &value);
do {

r_digit = value % 10;
printf("%d", r_digit);
value = value / 10;

} while (value != 0);
printf("\n");

}

Preview from Notesale.co.uk

Page 62 of 188

66
C Programming

if Statement

• The if statement allows branching (decision making) depending upon a
condition. Program code is executed or skipped. The basic syntax is

if (control expression)
program statement;

• If the control expression is TRUE, the body of the if is executed. If it is
FALSE, the body of the if is skipped.

• There is no “then” keyword in C!

• Because of the way in which floating point types are stored, it makes it very
difficult to compare such types for equality. Avoid trying to compare real
variables for equality, or you may encounter unpredictable results.

Preview from Notesale.co.uk

Page 66 of 188

68
C Programming

if-else Statement

• Used to decide between two courses of action. The syntax of the if-else
statement is

if (expression)
statement1;

else
statement2;

• If the expression is TRUE, statement1 is executed; statement2 is
skipped.

• If the expression is FALSE, statement2 is executed; statement1 is
skipped.

• Some examples
if (x<y) if (letter == 'e') {

min=x; ++e_count;
else ++vowel_count; }

min=y; else
++other_count;

Preview from Notesale.co.uk

Page 68 of 188

74
C Programming

switch Statement Example: Menus

• A common application of the switch statement is to control menu-driven
software:

switch(choice) {
case 'S':

check_spelling();
break;

case 'C':
correct_errors();
break;

case 'D':
display_errors();
break;

default:
printf("Not a valid option\n"); }

Preview from Notesale.co.uk

Page 74 of 188

77
C Programming

Logical Operators

• These operators are used to create more sophisticated conditional expressions
which can then be used in any of the C looping or decision making statements
we have just discussed. When expressions are combined with a logical
operator, either TRUE (i.e., 1) or FALSE (i.e., 0) is returned.

Operator Symbol Usage Operation
LOGICAL
AND

&& exp1 && exp2 Requires both exp1 and exp2 to be
TRUE to return TRUE. Otherwise, the
logical expression is FALSE.

LOGICAL
OR

|| exp1 || exp2 Will be TRUE if either (or both) exp1 or
exp2 is TRUE. Otherwise, it is FALSE.

LOGICAL
NOT

! !exp Negates (changes from TRUE to FALSE
and visa versa) the expression.

Preview from Notesale.co.uk

Page 77 of 188

91
C Programming

Arrays of Characters

• Strings are 1D arrays of characters. Strings must be terminated by the null
character '\0' which is (naturally) called the end-of-string character. Don’t
forget to remember to count the end-of-string character when you calculate the
size of a string.

• As will all C variables, strings must be declared before they are used. Unlike
other 1D arrays the number of elements set for a string set during declaration
is only an upper limit. The actual strings used in the program can have fewer
elements. Consider the following code:

static char name[18] = "Ivanova";

• The string called name actually has only 8 elements. They are
'I' 'v' 'a' 'n' 'o' 'v' 'a' '\0'

• Notice another interesting feature of this code. String constants marked with
double quotes automatically include the end-of-string character. The curly
braces are not required for string initialization at declaration, but can be used
if desired (but don’t forget the end-of-string character).

Preview from Notesale.co.uk

Page 91 of 188

95
C Programming

More String Functions

• Included in the string.h are several more string-related functions that are
free for you to use. Here is a brief table of some of the more popular ones
Function Operation
strcat Appends to a string
strchr Finds first occurrence of a given character
strcmp Compares two strings
strcmpi Compares two, strings, non-case sensitive
strcpy Copies one string to another
strlen Finds length of a string
strncat Appends n characters of string
strncmp Compares n characters of two strings
strncpy Copies n characters of one string to another
strnset Sets n characters of string to a given character
strrchr Finds last occurrence of given character in string
strspn Finds first substring from given character set in string

Preview from Notesale.co.uk

Page 95 of 188

96
C Programming

More String Functions Continued

• Most of the functions on the previous page are self-explanatory. The UNIX
man pages provide a full description of their operation. Take for example,
strcmp which has this syntax

strcmp(string1,string2);

• It returns an integer that is less than zero, equal to zero, or greater than zero
depending on whether string1 is less than, equal to, or greater than
string2.

• String comparison is done character by character using the ASCII numerical
code

Preview from Notesale.co.uk

Page 96 of 188

99
C Programming

More Character Functions

• As with strings, there is a library of functions designed to work with character
variables. The file ctype.h defines additional routines for manipulating
characters. Here is a partial list
Function Operation
isalnum Tests for alphanumeric character
isalpha Tests for alphabetic character
isascii Tests for ASCII character
iscntrl Tests for control character
isdigit Tests for 0 to 9
isgraph Tests for printable character
islower Tests for lowercase character
isprint Tests for printable character
ispunct Tests for punctuation character
isspace Tests for space character
isupper Tests for uppercase character
isxdigit Tests for hexadecimal
toascii Converts character to ASCII code
tolower Converts character to lowercase
toupper Converts character to upper

Preview from Notesale.co.uk

Page 99 of 188

112
C Programming

return Statement Examples

• The data type of the return expression must match that of the declared
return_type for the function.

float add_numbers (float n1, float n2) {
return n1 + n2; /*legal*/
return 6; /*illegal, not the same data type*/
return 6.0; /*legal*/ }

• It is possible for a function to have multiple return statements. For example:

double absolute(double x) {
if (x>=0.0)

return x;
else

return -x;
}

Preview from Notesale.co.uk

Page 112 of 188

113
C Programming

Using Functions

• This is the easiest part! To invoke a function, just type its name in your
program and be sure to supply arguments (if necessary). A statement using our
factorial program would look like

number=factorial(9);

• To invoke our write_header function, use this statement
write_header();

• When your program encounters a function invocation, control passes to the
function. When the function is completed, control passes back to the main
program. In addition, if a value was returned, the function call takes on that
return value. In the above example, upon return from the factorial
function the statement

factorial(9) 362880

• and that integer is assigned to the variable number.

Preview from Notesale.co.uk

Page 113 of 188

115
C Programming

Using Function Example

• The independence of actual and dummy arguments is demonstrated in the
following program.

#include <stdio.h>
int compute_sum(int n) {

int sum=0;
for(;n>0;--n)

sum+=n;
printf("Local n in function is %d\n",n);
return sum; }

main() {
int n=8,sum;
printf ("Main n (before call) is %d\n",n);
sum=compute_sum(n);
printf ("Main n (after call) is %d\n",n);
printf ("\nThe sum of integers from 1 to %d is %d\n",n,sum);}

Main n (before call) is 8
Local n in function is 0
Main n (after call) is 8

The sum of integers from 1 to 8 is 36

Preview from Notesale.co.uk

Page 115 of 188

121
C Programming

extern Storage Class

• In contrast, extern variables are global.

• If a variable is declared at the beginning of a program outside all functions
[including main()] it is classified as an external by default.

• External variables can be accessed and changed by any function in the
program.

• Their storage is in permanent memory, and thus never disappear or need to be
recreated.

 What is the advantage of using global variables?
 It is a method of transmitting information between functions in a program

without using arguments.

Preview from Notesale.co.uk

Page 121 of 188

126
C Programming

char and int Formatted Output Example

• This program and it output demonstrate various-sized field widths and their
variants.

#include <stdio.h>
main() {

char lett='w';
int i=1,j=29;
printf ("%c\n",lett);
printf ("%4c\n",lett);
printf ("%-3c\n\n",lett);
printf ("%d\n",i);
printf ("%d\n",j);
printf ("%10d\n",j);
printf ("%010d\n",j);
printf ("%-010d\n",j);
printf ("%2o\n",j);
printf ("%2x\n",j);

}

w
w

w

1
29

29
0000000029
29
35
1d

Preview from Notesale.co.uk

Page 126 of 188

130
C Programming

s Format Identifier

• For strings, the field length specifier works as before and will automatically
expand if the string size is bigger than the specification. A more sophisticated
string format specifier looks like this

%6.3s

field width maximum number of characters printed

• where the value after the decimal point specifies the maximum number of
characters printed.

• For example;

printf("3.4s\n","Sheridan"); Sher

Preview from Notesale.co.uk

Page 130 of 188

131
C Programming

Strings Formatted Output Example

#include <stdio.h>
main() {

static char s[]="an evil presence";
printf ("%s\n",s);
printf ("%7s\n",s);
printf ("%20s\n",s);
printf ("%-20s\n",s);
printf ("%.5s\n",s);
printf ("%.12s\n",s);
printf ("%15.12s\n",s);
printf ("%-15.12s\n",s);
printf ("%3.12s\n",s);

}

an evil presence
an evil presence

an evil presence
an evil presence
an ev
an evil pres

an evil pres
an evil pres
an evil pres

Preview from Notesale.co.uk

Page 131 of 188

139
C Programming

Pointer Arithmetic

• A limited amount of pointer arithmetic is possible. The "unit" for the
arithmetic is the size of the variable being pointed to in bytes. Thus,
incrementing a pointer-to-an-int variable automatically adds to the pointer
address the number of bytes used to hold an int (on that machine).

– Integers and pointers can be added and subtracted from each other, and
– incremented and decremented.
– In addition, different pointers can be assigned to each other

• Some examples,

int *p, *q;
p=p+2;
q=p;

Preview from Notesale.co.uk

Page 139 of 188

151
C Programming

Introduction to Structures

• A structure is a variable in which different types of data can be stored
together in one variable name. Consider the data a teacher might need for a
high school student: Name, Class, GPA, test scores, final score, ad final course
grade. A structure data type called student can hold all this information:

struct student {
char name[45];
char class;
float gpa;
int test[3];
int final;
char grade;

};

• The above is a declaration of a data type called student. It is not a
variable declaration, but a type declaration.

keyword

structure
data type name member name & type

Preview from Notesale.co.uk

Page 151 of 188

152
C Programming

Structure Variable Declaration

• To actually declare a structure variable, the standard syntax is used:

struct student Lisa, Bart, Homer;

• You can declare a structure type and variables simultaneously. Consider the
following structure representing playing cards.

struct playing_card {

int pips;

char *suit;

} card1,card2,card3;

Preview from Notesale.co.uk

Page 152 of 188

183
C Programming

Dynamic Memory Allocation: free

• When the variables are no longer required, the space which was allocated to
them by calloc should be returned to the system. This is done by,

free(appt);

Preview from Notesale.co.uk

Page 183 of 188

