Systems A system is an abstraction of anything that takes an input

- signal, operates of Q, and profiles an output signal.
 A profile general of G, and profiles a relationship between its input and its output.
 - Examples could be car, camera, etc.
- Systems that operate on continuous-time signal are known as continuous-time (CT) systems.
- Systems that operate on discrete-time signals are known as discrete-time (DT) systems.

- Drill 1 1. Most of the signals in this physical world is (CT signals / DT signals). Choose the right of the page 10 of the signal of
 - Mention four systems other than those mentioned in the slides. 2.
 - Mention three signals other than those mentioned in the slides. 3.
 - How can we convert a CT signal into a DT signal? 4.
 - Can a system have multiple inputs and multiple outputs? 5.
 - 6. What do you mean by time-domain signal and spatial-domain signal?

Three Important Cases
Case 1: Signals with finite totologing, i.e.,
$$E_{\infty} < \infty$$
:
Such Signal must have zero average power. For example, in continuous
Prease, if E_{∞} Prease, then
 $P_{\infty} = \lim_{T \to \infty} \frac{E_{\infty}}{2T} = 0$

An example of a finite-energy signal is a signal that takes on the value of 1 for $0 \le t \le 1$ and 0 otherwise. In this case, $E_{\infty} = 1$ and $P_{\infty} = 0$.

Case 2: Signals with finite average power, i.e., $P_{\infty} < \infty$:

For example, consider the constant signal where x[n] = 4. This signal has infinite energy, as

$$E_{\infty} = \lim_{N \to \infty} \sum_{n=-N}^{+N} |x[n]|^2 = \lim_{N \to \infty} \sum_{n=-N}^{+N} 4^2 = \dots + 16 + 16 + 16 \dots$$

CEN340: Signals and Systems; Ghulam Muhammad

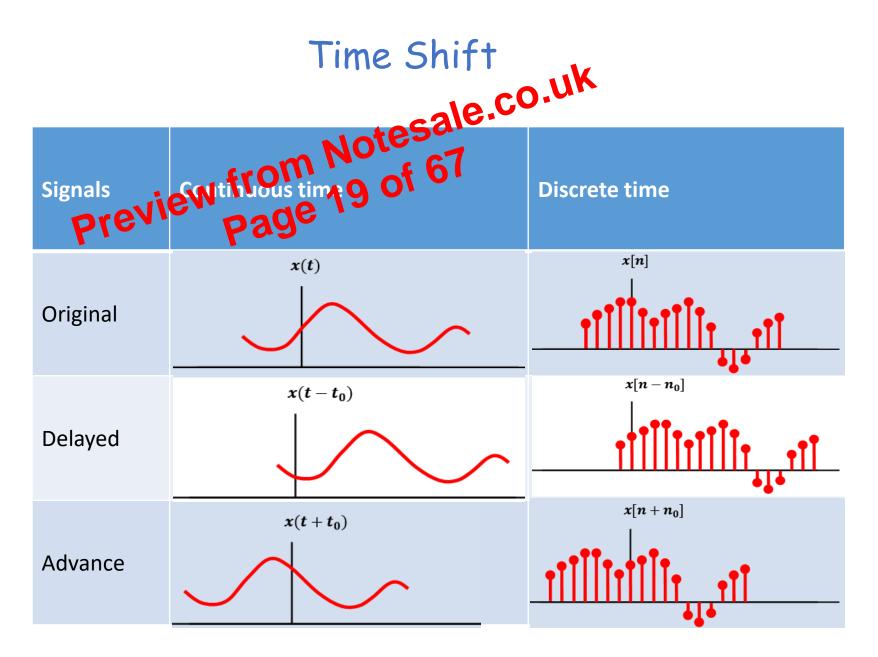
Three Important Cases - continued
However, the total average Other is finite,

$$P_{\infty} \triangleq \lim_{N \to \infty} \frac{P_{1}a9}{2N+1} \sum_{n=-N}^{N} |x[n]|^{2} = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{+N} 4^{2}$$

$$= \lim_{N \to \infty} \frac{16}{2N+1} \sum_{n=-N}^{+N} 1 = \lim_{N \to \infty} \frac{16(2N+1)}{2N+1} = \lim_{N \to \infty} 16 = 16$$

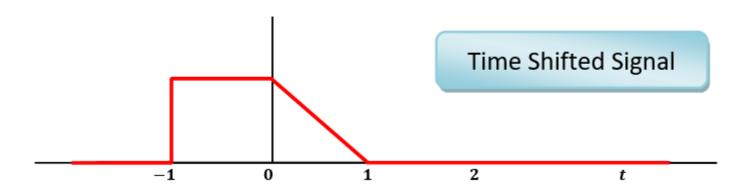
Case 3: Signals with neither E_{∞} nor P_{∞} finite:

A simple example of such a case could be x(t) = t. In this case both E_{∞} and P_{∞} are infinite



The signal x(t + 1) can be obtained by shifting the given signal to the left by one unit

x(t+1)



Periodic Complex Exponential and Sinusoidal Signals Now we consider the case of complex Sponentials where *a* is purely imaginary.

Now we consider the case of complete point of a is purely imaginary. More, specifically, we consider $a = e^{j\omega_0 t}$

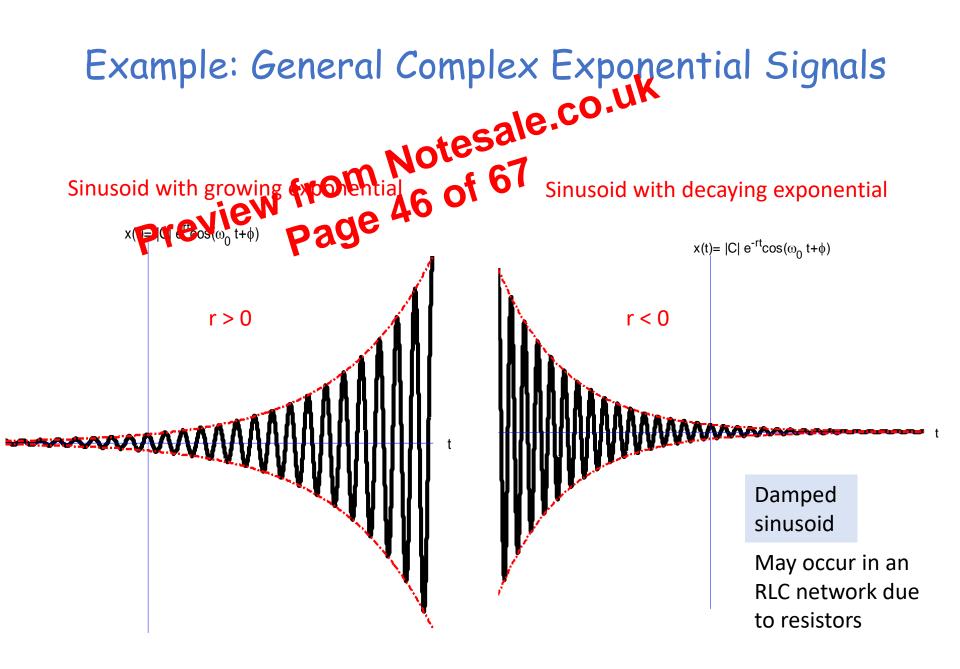
$$x(t) = x(t+T) \Longrightarrow e^{j\omega_0 t} = e^{j\omega_0(t+T)} = e^{j\omega_0 t}e^{j\omega_0 T} \Longrightarrow e^{j\omega_0 T} = 1$$

This equation can be true,

1. If, $\omega_0 = 0$, then x(t) = 1, which is periodic for any value of T.

2. If, $\omega_0 \neq 0$, then the fundamental period T_0 of x(t), i.e. the smallest value of T for which the above equation holds, is

$$T_0 = \frac{2\pi}{|\omega_0|}$$



1.3.2 Discrete-Time Complex Exponential and Sinusoidal Signal A discrete-time complex commential signal cosequence x[n] can be written as preview page $x[n] = C\alpha^n$

where C and α are, in general, complex numbers. This could also be written as

$$x[n] = Ce^{eta n}$$

where $lpha = e^{eta}$

Real Exponential Signals

In this case both C and α are real numbers, and x[n] is called a real exponential.

USAGE: Real-valued discrete-time exponentials are often used to describe population growth as a function of generation, and total return on investment as a function of day, month, a quarter.

Discrete-Time Complex Exponential Signals In case of continuous-time exponential, the signals $e^{j\omega_0 t}$ are all distinct for distinct values of ω_0 for 54 of 54 o

- me, these Tals are not distinct. In fact, the signal with frequency ω_0 is identical to signals with frequencies $\omega_0 \pm 2\pi$, $\omega_0 \pm 4\pi$ and so on. Therefore, in considering discrete-time complex exponentials, we need only consider a frequency interval of size 2π . The most commonly used 2π intervals are $0 \le \omega_0 \le 2\pi$ or the interval $-\pi \le \omega_0 \le \pi$.
- As ω_0 is gradually increased, the rate of oscillations in the discrete-time signal does not keep on increasing. If ω_0 is increased from 0 to 2π , the rate of oscillations first increase and then decreases.
- Note in particular that for $\omega_0 = \pi$ or for any odd multiple of π ,

$$e^{j\pi n} = \left(e^{j\pi}\right)^n = (-1)^n$$

so that the signal oscillates rapidly, changing sign at each point in time.

1.9 (a) Workout - (8)
If the signal x(t) is periodic, find the fundament period.
NoteSate

$$j = je^{j10t} 64 \text{ of } 67$$

 $= j(\cos 10t + j \sin 10t) = j \cos 10t - \sin 10t$
 $= j \sin (10t + \pi/2) + \cos (10t + \pi/2)$
 $= e^{(10t + \pi/2)}$

Fundamental period:

$$T_0 = \frac{2\pi}{|\omega_0|} = \frac{2\pi}{10} = \frac{\pi}{5}$$